Смекни!
smekni.com

Строительные машины 2 Принципы устройства (стр. 4 из 45)

i = п1 / n2 =D2 / D1( 1 - x ) (1.17)

где x — величина, характеризующая относительное скольжение и зависящая от материала фрикционных дисков (x= 0,002 - 0,03).

Фрикционными передачами можно передавать вращение между пересекающимися осями (рис. 1.13, б). В этом случае усилие, с которым конические катки прижимаются один к другому, создается под действием усилий, направленных вдоль осей катков.

Передаточные числа у фрикционных передач не превышают 10; чаще всего они составляют 5—7. Фрикционные передачи применяют в случаях, когда передаточное число должно быть переменным.

На рис. 1.13, в показан случай, когда два диска расположены так, что их оси взаимно перпендикулярны. Диск 1 соприкасается по образующей наружной поверхности с торцевой поверхностью диска 2 и прижимается к нему силой Q. При вращении диска 1 сила трения приводит в движение диск

2. Частота вращения диска 2 зависит от расстояния D2 диска 1 от оси вращения диска 2. Передаточное число в такой передаче равно:

i=D1/D2.

Изменением величины D2 регулируется величина i. Такие передачи просты по конструкции, имеют небольшие динамические нагрузки, возможность плавного изменения передаточного числа (вариаторы). К недостаткам следует отнести проскальзывание дисков, в результате чего не обеспечивается заданное передаточное число.

В строительных машинах фрикционные передачи применяются редко и то во вспомогательных механизмах.

Ременные передачи служат для передачи вращения от одного вала к другому, находящемуся на значительном расстоянии (рис. 1.14, а). Они состоят из двух шкивов, на которые надет бесконечный ремень (плоский, трапецеидальный — клиновой, реже круглый).

По применяемым материалам ремни бывают хлопчатобумажными прорезиненными (наиболее распространенные), хлопчатобумажными и полиамидными, обладающими прочностью больше в пять раз, чем прорезиненные, и в 8—10 раз больше, чем кожаные.

При вращении ведущего шкива в результате сил трения, возникающих между шкивом и ремнем, последний движется в направлении вращения этого шкива. В результате сил трения, возникающих между ремнем и ведомым шкивом, ремень увлекает за собой и приводит во вращение ведомый шкив. Величина силы трения между шкивом и ремнем, т. е. величина тягового усилия (Н) определяется как разность между силами S1 и S2, действующими в сбегающей и набегающей ветвях ремня: P = S1 — S2.

(1.18)

Ременную передачу можно рассматривать как гибкую нить, огибающую цилиндр. Для определения натяжения такой нити Эйлер вывел зависимость ma

S1 / S2= e

(1.19)

где S1 и S2 — силы, приложенные к концам нити, (Н); е — основание натурального логарифма; m — коэффициент трения между нитью и поверхностью цилиндра; a — угол обхвата цилиндра нитью.

пг б)

Рис. 1.14. Ременные передачи

В ременных передачах угол а есть угол между радиусами, проведенными через точки касания ветвей ремня с окружностью шкива.

Отношение S1 / S2 зависит в значительной степени от m и a.

Большое значение имеет правильное и надежное соединение концов ремня. Плоские кожаные и прорезиненные ремни склеивают специальными клеями. Концы ремня можно скреплять заклепками, скобками и т.д. (рис. 1.14,6). При склеивании прочность стыков составляет 80—85% прочности целого ремня, а при скреплении концов — всего 25— 30%.

Все большее применение получают клиновые ремни. Они позволяют передавать вращение при малом расстоянии между осями шкивов. Угол j

(рис. 1 15, а) составляет 34—40°. Различные виды клиновых Ремней показаны на рис. 1.15, б.

Для плоских ремней оптимальное расстояние между осями шкивов

A = 2(D1 + D2), мм,

(1.20) где D1, D2 — диаметры ведущего и ведомого шкивов, мм.

Для клииоременных передач величину А выбирают в зависимости от диаметра большого шкива Dб и передаточного числа:

I

1

2

3

4

5

6 и более

A

1,5Dб

1,2 Dб

1 Dб

0,95Dб

0,9 Dб

0,85 Dб

Минимальное расстояние

Аmin = 0,55 (D1 + D2) + H, мм,

(1.21) где Н — высота сечения ремня, мм.

В плоскоременных передачах передаточные числа допускаются до 10, в клииоременных — до 15, передаваемые мощности — 2000 и 10 000 кВт.

Рис. 1.15. Клиноременные передачи: / — кордовая ткань; 2 — резиновы( ткани; 4

наполнитель; 3 — обертка из прорезиненной — кордовые шнуры

Скорость ремня может достигать 30 м/с при прорезиненных, 45 м/с— при кожаных. Коэффициент трения между ремнем и шкивом у клиновых ремней значительно больше, чем у плоских.

Достоинствами ременной передачи являются: простота конструкции и возможность передачи движения на сравнительно большие расстояния; эта передача смягчает толчки, ограничивает возникновение значительных перегрузок. К недостаткам относят большие габариты и невозможность получения точного передаточного числа из-за проскальзывания ремня.

Передаточное число i ременной передачи определяется по формуле

(1.17).

При эксплуатации ременных передач необходимо следить, чтобы масло не попадало на внутреннюю часть ремней и на поверхность шкива, так как резко снижается коэффициент трения, а следовательно, и величина тягового усилия Р.

Работоспособность ременных передач определяется: 1) тяговой способностью или силами сцепления ремня со шкивом; если эти силы недостаточны, то ремень начинает буксовать; 2) долговечностью ремня.

В последнее время появились зубчато-ременные передачи, получающие распространение с внедрением новых искусственных материалов, армированных стальными тросами или с полиамидным кордом. Эти передачи компактнее, работают бесшумно, без скольжения, со скоростью до 80 м/с и передают мощность до 1000 кВт.

В строительных машинах ременные передачи применяют редко для привода дробилок, очень редко с клиновыми ремнями для других машин, чаще для вспомогательных механизмов.

Рис. 1.16.схема зацепления цилиндрических зубчатых колес:

I — ножка; 2 — линия зацепления; 3 — впадина; 4 — головка; 5 — основная окружность

Зубчатые передачи состоят из колес, по окружностикоторыхнарезаны зубья. Оси колес расположены на таком расстоянии, что зубья одного колеса входят между впадинами другого колеса. При вращении одного колеса боковые поверхности его зубьев упираются в боковые поверхности зубьев другого колеса, в результате чего второе колесо получает вращение в противоположном направлении. Меньшее из пары зубчатых колес называют шестерней, а большее —колесом. Термин зубчатое колесо является общим.

Представим себе два диска диаметром dx и d2, установленные так, что они соприкасаются в точке Р (рис. 1.16). Если диск диаметром dj имеет частоту вращения в минуту, равную п1 и приводит во вращательное движение диск диаметром d2 без скольжения, то при вращении этих дисков передаточное число

i= n1 / n2 = d2 / d1

Eсли по наружному диаметру дисков нарезать зубья и выполнить профиль этих зубьев таким, чтобы во время вращения зубья все время соприкасались бы в точке касания дисков Р и обкатывались друг относительно друга без скольжения, то при вращении таких зубчатых колес передаточное число

i= n1 / n2 = d2 / d1= z1 / z2.

(1.21)

Этим условиям отвечают зубья, имеющие профиль развертки-окружности (эвольвентный).

Для того чтобы профили зубьев касались в точке Р, необходимо Развернуть окружности, диаметры которых меньше dx и d2. Эти окруж-

ности диаметром d0 называются основными окружностями.

Касательная к этим окружностям называется линией зацепления и проходит через точку Р, называемую полюсом зацепления.

Окружности диаметром dx и d2 называются делительными.

Основными элементами, характеризующими зубчатое зацепление, являются:

число зубьев шестерни и колеса соответственно z1 и z2;

передаточное число i = n1 / ni = z2 / z1

шаг зубьев t, равный расстоянию между одноименными профилями (двумя правыми или двумя левыми) двух смежных зубьев, измеренному по делительной окружности, мм; модуль зацепления т = t / pпринимается в качестве основного параметра

зацепления; высота головки зуба К и высота ножки зуба h"; нормальная высота

головки принята h' = т; высота ножки h" = 1,15 m, мм; высота зуба для нормального зацепления h = 2,25m, мм; диаметр делительной окружности d = mz, мм; диаметр окружности выступов Di (наружный диаметр зубчатого колеса):

De = А + 2/h' = mz + 2m = т (г + 2), мм; межцентровое расстояние А, мм; толщина зуба s, мм;