Смекни!
smekni.com

Датчики управления двигателем автомобиля (стр. 4 из 12)

Термопары, состоящие из двух различных металлов, вследствие эффекта Зеебека генерируют термоЭДС (термоэлектрическое напряжение) при нагреве. Три наиболее популярных типа термопар, классифицируемых в зависимости от используемой комбинации металлов и сплавов, — железо-константан (J), медь-константан (T) и хромель-алюмель (K) (обозначения согласно ГОСТ и ANSI). Термопары K-типа с достаточно высокой линейностью и точностью позволяют измерять температуры –270…+1370 °C, термопары J-типа измеряют температуры порядка –150…+1250 °C, T-типа — –200…+350 °C. Термопары из благородных металлов, например, B-типа на основе платины/сплава 30% платины с родием позволяют измерять более высокие температуры порядка 800–1700 °C и выше. Известны также вольфрам-рениевые термопары ТВР (обозначение ГОСТ), которые могут измерять температуры от 1000 до 2200 (2500) °C.

Выходное напряжение термопар является малым — например, 40 мкВ/°C для датчиков K-типа. Обработку сигналов термопар упрощают специальные сигналообработчики, например, MAX6674/5 Maxim для термопар K-типа.

Кремниевые термисторы с PTC Infineon серий KT и KTY и Philips серий KTY (рис. 5ф) предназначены для измерения температур воздуха, газов и жидкостей в диапазоне –55…150 °C [20, 21]. Термочувствительный элемент — это n-кремниевый кристалл, реализованный по планарной технологии. Корпусирование датчиков выполняется в SMD корпусах типа SOT23 (KTY82-2 Philips).

В датчиках серий KTY использован принцип сопротивления растекания Spreading Resistance — производный от одноточечного метода измерения сопротивления полупроводниковой подложки, которое, согласно этому методу, зависит только от удельного сопротивления материала кристалла и площади контакта и не зависит от толщины и площади подложки. Датчики характеризуются отсутствием p-n-переходов, большим PTC, несколько меньшей линейностью, чем RTD, и производятся по технологии, аналогичной производству ИС, что допускает включение дополнительных активных и пассивных цепей в кристалле датчика.

Одним из таких применений являются термостаты в системах водяного и масляного охлаждения бензиновых или дизельных двигателей. Хотя ИС термопереключателей с двоичным цифровым или аналоговым выходом и (или) порогами удобны для автоматического включения/выключения вентилятора, для работы при более высоких температурах (0–260 °C), чем возможные с технологией ИС, рекомендуются термостаты на другой основе, например, коммерческие версии от Honeywell (рис. 5щ).

В последние годы в автоэлектронике приобретают актуальность бесконтактные способы измерений, которые способны детектировать очень малые изменения в тепловом (инфракрасном) излучении объекта. Многие из IR-датчиков работают по принципу сравнения инфракрасного излучения объекта, поглощаемого термочувствительной мембраной, с температурой детектора, которую измеряет термистор (MEMS-технология). Разница температур преобразуется в электрический потенциал посредством термоэлектрического эффекта в термоэлементе. Напряжение питания для датчика не требуется.

Ввиду того, что IR-датчики способны измерять температуры порядка –20…+100 °C и, непосредственно, — только твердотельных объектов или поверхностей с достаточной эмиттирующей способностью, они находят свои основные применения в автомобильных системах безопасности (определение положения пассажиров, видеосистемы наблюдения в ночных и туманных условиях), климат-контроле, для обнаружения конденсации на окнах при тумане. Примерами являются MLX90247 Melexis, TS105-5 и другие HL-Planartechnik, ZTP-101 и другие Thermometrics. Расширение этих устройств — инфракрасные сенсорные массивы.

В различных узлах автомобиля температура является часто второстепенным параметром, который служит для компенсации измерений основных параметров или предупреждения ситуаций, когда высокая температура может вызывать сбои и неисправности работы автомобильных систем. Следствием этого является миграция датчиков температуры в различные мультисенсорные модули контроля основных параметров (например, актуально объединение датчика массового расхода воздуха и температуры во впускном патрубке или датчика давления и температуры воздуха). Но при этом число датчиков, выполняющих индивидуальные измерения температуры в новых автомобилях, не уменьшается, а, скорее, увеличивается. Новые применения, например, включают контроль температуры жидкости трансмиссии, выхлопов, контроль работы батарей гибридных автомобилей, а также климат-контроль, измерение перегрева шин.

Датчики детонации и другие датчики контроля двигателя и

топливной системы в системах Powertrain

Другие датчики, важные для функционирования систем Powertrain, но объемы потребления которых в процентном отношении по сравнению с другими типами датчиков невелики, — это датчик детонации, датчики уровня жидкостей — топлива и масла, датчики крутящего момента двигателя и коробки передач.

Датчики детонации используются для гашения детонации — нерегулярного горения и сильной вибрации двигателя (экономия топлива достигает 9%). Типичная конструкция датчика детонации включает компрессионный пьезоэлектрический элемент (керамику или кристалл), способный реагировать на акустические вибрационные колебания двигателя, генерируя электрический сигнал, например, если резонансная частота его характеристики совпадает с частотой детонации (датчики резонансного типа). Существуют датчики как резонансного, так и нерезонансного типа (рис. 6). Нерезонансные датчики характеризуются плоской АЧХ в определенном диапазоне порядка 1–15 кГц и более гибко адаптируются к различным типам двигателей, но резонансный датчик обеспечивает при детонации более заметные высокие уровни сигнала. В этой сфере рынка ситуация остается пока без изменений, хотя и для замены пьезоэлемента напрашивается поиск новых решений — компактных и недорогих MEMS. По мере развития альтернативных технологий мониторинга процессов в двигателе датчик детонации может быть и исключен.


Ученые Манчестерского университета разработали новый тип беспроводных датчиков для удаленного мониторинга механических систем и предупреждения сбоев коробок передач, двигателей, дизельных двигателей, подшипников колес, механизмов дверей. MEMS-датчик будет отслеживать вибрацию, температуру и давление, может также измерять концентрацию металлических элементов, увеличивающуюся при износе, что помогает уточнять срок службы.

Рост топливных цен и более строгие нормы регулирования эффективности и эмиссии транспортных средств создают глобальный спрос на прецизионные датчики крутящего момента двигателей и входного/выходного валов коробок передач (рис. 7), которые актуальны как на стадии контроля, так и для работы в режиме реального времени. Важнейшая актуальная технология для этого типа устройств — магнитостриктивная, от MDI и SiemensVDO (рис. 7а–б), с поляризованным магнитоупругим кольцом и бесконтактным датчиком магнитного поля, которое пропорционально крутящему моменту. Альтернативные актуальные методы представляют собой беспроводные и безбатарейные SAW устройства (рис. 7в–г) на поверхностных акустических волнах, которые разработали компании Honeywell и Transense, — резонаторы, резонансная частота которых (номинальная 433 МГц датчиков Honeywell) изменяется под действием механического напряжения. Опрос датчиков осуществляется беспроводным методом — радиочастотными импульсами. Резонансная частота отклика позволяет вычислить крутящий момент.

Оба вида датчиков работают при температурах до 150 °C, характеризуются высокой точностью, прочностью, малым размером и весом датчика, долговременной стабильностью, способностью работать в жестких условиях окружающей среды, технологичностью и низкой ценой.

Датчики уровня масла

Эти устройства используются сегодня для определения уровня и потребления масла и представляют собой не что иное, как электронное замещение механического щупа, выполняющее те же функции, но в реальном времени, указывая на необходимость замены масла двигателя. Например, датчики, измеряющие уровень масла, предлагают компании Hella, GE Thermometrics (термистор с PTC), SiemensVDO (рис. 8).


Текущая линейка Hella, например, включает как относительно простой поплавковый переключатель, так и интеллектуальные термические датчики для непрерывных аналоговых измерений уровня масла (рис. 8а–в).

Любой тип датчиков гарантирует обнаружение отсутствия масла и подачу команды о невозможности запуска двигателя, но конструкции на основе поплавковых переключателей, хотя все еще более предпочтительны, чем масляный щуп, уже несколько устарели, поскольку функциональный принцип поплавковых переключателей предполагает срабатывание датчика только в фиксированных точках переключения.

Тепловые датчики Thermal oil level sensors Hella измеряют уровни в диапазоне примерно 50 мм и могут опционно определять температуру масла (рис. 8в). Согласно термическому принципу уровень масла вычисляется по времени охлаждения сенсорного элемента из линейного соотношения с уровнем при полном заполнении. Датчик с характеристикой аналогового типа по состоянию масла косвенно обеспечивает контроль состояния двигателя, способствуя раннему обнаружению сбоев.