Смекни!
smekni.com

Привод к шнеку-смесителю (стр. 1 из 5)

Оглавление

1.Техническое задание

2.Введение

3.Выбор электродвигателя , кинематический и силовой расчёт привода

4.Расчёт зубчатой передачи редуктора

5.Проектировочный расчёт валов редуктора

6.Конструктивные размеры зубчатой пары

7. Конструктивные размеры корпуса и крышки редуктора

8. Первый этап компоновки редуктора

9. Расчёт ременной передачи

10 Подбор шпонок и проверочный расчёт шпоночных соединений

11.Второй этап эскизной компоновки редуктора

12. Подбор подшипников для валов редуктора

13.Проверочный расчёт валов редуктора

14.Смазка зацепления и подшипников

редуктора. Выбор сорта масла и его количества

15. Сборка редуктора

16.Список литературы

17.Оглавление

Введение

Редуктором называют механизм, состоящий из зубчатых или червячных передач, выполненный в виде отдельного агрегата и служащий для передачи вращения от вала двигателя к валу рабочей машины. Кинематическая схема привода может включать, помимо редуктора, открытые зубчатые передачи, цепные или ременные передачи. Указанные механизмы являются наиболее распространенной тематикой курсового проектирования.

Назначение редуктора - понижение угловой скорости и соответственно повышение вращающего момента ведомого вала по сравнению с ведущим. Механизмы для повышения угловой скорости, выполненные в виде отдельных агрегатов, называют ускорителями или мультипликаторами.

Редуктор состоит из корпуса (литого чугунного или сварного стального), в котором помещают элементы передачи — зубчатые колеса, валы, подшипники и т.д. В отдельных случаях в корпусе редуктора размещают также устройства для смазывания зацеплений и подшипников (например, внутри корпуса редуктора может быть помещен шестеренный масляный насос) или устройства для охлаждения (например, змеевик с охлаждающей водой в корпусе червячного редуктора).

Редуктор проектируют либо для привода определенной машины, либо по заданной нагрузке (моменту на выходном валу) и передаточному числу без указания конкретного назначения. Второй случай характерен для специализированных заводов, на которых организовано серийное производство редукторов.

Кинематические схемы и общие виды наиболее распространенных типов редукторов представлены на рис. 1 - 3. На кинематических схемах буквой Б обозначен входной (быстроходный) вал редуктора, буквой Т - выходной (тихоходный).

Редукторы классифицируют по следующим основным признакам: типу передачи (зубчатые, червячные или зубчаточервячные); числу ступеней (одноступенчатые, двухступенчатые и т.д.); типу зубчатых колес (цилиндрические, конические, коническо-цилиндрические и т.д.); относительному расположению валов редуктора в пространстве (горизонтальные, вертикальные); особенностям кинематической схемы (развернутая, соосная, с раздвоенной ступенью и т.д.).

Возможности получения больших передаточных чисел при малых габаритах обеспечивают планетарные и волновые редукторы.

Одноступенчатые цилиндрические редукторы.

Из редукторов рассматриваемого типа наиболее распространены горизонтальные (рис.1). Вертикальный одноступенчатый редуктор показан на рис. 2. Как горизонтальные, так и вертикальные редукторы могут иметь колеса с прямыми, косыми или шевронными зубьями. Корпуса чаще выполняют литыми чугунными, реже — сварными стальными. При серийном производстве целесообразно применять литые корпуса. При серийном производстве целесообразно применять

Рис. 1. Одноступенчатый горизонтальный редуктор с цилиндрическими зубчатыми колесами; а — кинематическая схема; б — общий вид редуктора с косозубыми колесами

литые корпуса. Валы монтируют на подшипниках качения или скольжения. Последние обычно применяют в тяжелых редукторах.

Максимальное передаточное число одноступенчатого цилиндрического

Рис. 2. Одноступенчатый вертикальный редуктор с цилиндрическими колесами: а — кинематическая схема; 6 —- общий вид

Рис.3. Сопоставление габаритов одноступенчатого и двухступенчатого

редукторов с цилиндрическими колесами при одинаковом передаточном числе и = 8,5 редуктора по ГОСТ 2185—66 umax = 12,5. Высота одноступенчатого редуктора с таким или близким к нему передаточным числом больше, чем двухступенчатого с тем же значением и (рис. 3). Поэтому практически редукторы с передаточными числами, близкими к максимальным, применяют редко, ограничиваясь и < 6. Ново-Краматорский машиностроительный завод (НКМЗ) выпускает крупные (межосевые расстояния aw= 300 - 1000 мм) одноступенчатые горизонтальные редукторы с и = 2,53 - 8,0.

Выбор горизонтальной или вертикальной схемы для редукторов всех типов обусловлен удобством общей компоновки привода (относительным расположением двигатели и рабочего вала приводимой) в движение машины и т.д.


Тяговая сила цепи F = 2,5 кН

Скорость перемещения смеси V = 1,5 м/сек

Наружный диаметр шнека D=450 мм

Допустимое отклонение скорости смеси δ = 5 %

Срок службы привода – 4 года

Тип редуктора

Выбор электродвигателя, кинематический и силовой расчет

Определяем требуемую мощность электродвигателя:

где

КПД зубчатой передачи

КПД ременной передачи

коэффициент, учитывающий потери пары подшипников качения

Значения КПД передачи:

([1], таблица 1.1)

По требуемой мощности выбираем электродвигатель 3-х фазный, коротко замкнутый, в серии 4А, закрытый, обдуваемый, с синхронной частотой вращения:

Электродвигатель 4Аl32S4 с номинальной мощностью 5,5 кВт и номинальной частотой вращения

об/мин

Общее передаточное отношение привода:

Принимаем передаточное число редуктора:

([1], страница 36)

Передаточное число ременной передачи:

Частота вращения ведущего вала редуктора:

об/мин

Угловая скорость ведущего вала редуктора:

Угловая скорость ведущего вала электродвигателя:

Угловая скорость ведомого вала редуктора:

Вращающие моменты:

Выведем все расчеты в таблицу:

I II III
P, кВт 4,19 3,75
n,об/мин 1455 375 150
T,
27,51 101,63 238,9
рад/с
152,3 39,3 15,7

4. Расчет зубчатой передачи редуктора

4.1Выбор материала и назначение термической обработки

Так как в задании нет особых требований в отношении габаритов передачи, выбираем материал со средними механическими свойствами.

Принимаем для шестерни и колеса сталь 45 термической обработкой – улучшение.

Твердость шестерни

, а твердость колеса
([1], таблица 3.3)

4.2 Определение допускаемых контактных напряжений и напряжений изгиба.

Допускаемые контактные напряжения:

предел контактной выносливости при базовом числе циклов

Для стали твердость меньше 350 и термообработкой улучшение

коэффициент долговечности

Число циклов колеса больше чем базовое ([1], страница 33)

коэффициент безопасности