Министерство образования и науки Украины
Севастопольский национальный технический университет
МЕТОДИЧЕСКИЕ УКАЗАНИЯ
по дисциплине
“ГИДРАВЛИКА, ГИДРО- И ПНЕВМОПРИВОДЫ”
По выполнению расчётно-графических заданий №2
для студентов дневной формы обучения
и контрольных работ
для студентов заочной формы обучения
специальности 7.090258
“Автомобили и автомобильное хозяйство”
Севастополь
2007
УДК 629.114.6
Методические указания по дисциплине ”Гидравлика, гидро- и пневмоприводы” по выполнению расчетно-графических заданий для студентов дневной формы обучения и контрольных работ для студентов заочной формы обучения специальности 7.090258 ”Ав-томобили и автомобильное хозяйство”/ Сост. Ю.Л. Рапацкий.- Севастополь: Издательство СевНТУ, 2001.-19с.
Целью методических указаний является оказание помощи студентам специальности ”Автомобили и автомобильное хозяйство” при изучении дисциплины “Гидравлика, гидно- и пневмоприводы” и самостоятельном выполнении расчетно-графических заданий студентами дневной формы обучения и контрольных работ заочниками.
Методические указания предназначены для студентов специальности 7.090258 ”Автомобили и автомобильное хозяйство” дневной и заочной форм обучения. Могут также использоваться студентами дневной и заочной форм обучения специальностей 7.090202 ”Технология машиностроения” и 7.090203 ”Металлорежущие станки и системы” при изучении ими соответствующих разделов аналогичной дисциплины.
Методические указания рассмотрены на заседании кафедры АТПП (протокол №4 от 29.12.2001 г)
Допущено учебно-методическим центром СевНТУ в качестве методических указаний.
Рецензент: Харченко А.О. канд. техн. наук, доцент кафедры Машиностроения и транспорта, Заслуженный изобретатель Украины.
Выбор вариантов на расчетно-графические задания для студентов дневной формы обучения и на контрольные работы для заочников.
Студенты дневной формы обучения выполняют в течение семестра два расчетно-графических задания (РГЗ). Выбор вариантов – по последней цифре номера зачетной книжки. РГЗ оформляются в соответствии с действующими стандартами Украины для текстовых документов на стандартных листах А4. Допускается оформление РГЗ на листах в клетку, а схем и чертежей – на миллиметровой бумаге. Рекомендуется использовать ПЭВМ для оформления РГЗ, в том числе целесообразно выполнять расчеты с применением одного из доступных математических пакетов Maple и Mathcad.
Защита студентами выполненных РГЗ приводится индивидуально, на консультациях, после проверки преподавателем правильности расчетов и оформления РГЗ.
РГЗ №1 должно быть выполнено на 10-11-й неделе семестра, а РГЗ №2 на 12-13-й неделе.
РГЗ №2 включает в себя задачу №1 (каждый студент решает два варианта задачи №1 в соответствии с таблицей Б1, а также задач №2.
Таблица Б1
Номера вариантов задачи №1 для второго РГЗ
Последняя цифра номера зачетной книжки | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Номера вариан-тов задачи №1 | 0,2 | 1,2 | 2,3 | 3,5 | 4,5 | 5,6 | 6,8 | 7,8 | 8,9 | 9,2 |
По результатам решения задачи №1 предложить конструкцию дросселя и изобразить её графически.
При решении задач №3 и 4 конструкцию насоса необходимо изобразить графически.
Студенты заочной формы обучения выполняют одну контрольную работу, в которую входят все задачи, которые включены в РГЗ №1 и РГЗ №2. Выбор вариантов осуществляется аналогично приведённому выше.
Задача I
К штоку поршня I гидроцилиндра 2 приложена постоянная нагрузка Р.
Перемещение поршня гидроцилиндра осуществляется напором рабочей жидкости плотностью ρ = 0,88.103 кг/м3 под давлением Рн ? развиваемым насосом. Поршень I и его шток уплотнены резиновыми манжетами шевронной формы.
Спроектировать гидропередачу обеспечивающую перемещение штока (вычертить схему гидропередачи, определить полезную мощность гидронасоса Nн, предельные эффективные площади сечения дросселя регулятора Sp min и Sp max, внутренний диаметр гидроцилиндра Dr), имея ввиду, что скорости перемещения поршня вправо устанавливаются дросселем, регулирующим скорость в пределах от Vmin до Vmax. Предложить конструкцию дросселя регулятора (эскиз). При этом к.п.д. гидропередачи при скорости перемещения поршня Vn = Vmax, в случае установки лросселя последовательно, но должен быть меньше 0.6. Коэффициент расхода дросселя принять постоянным и равным μ = 0,4. Сопротивление гидромагистрали кроме сопротивления дросселя пренебречь.
Исходные данные:
№ вар | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Установка дросселя | Вход | Выход | Парал- лельно | Вход | Выход | Парал- леньно | Вход | Выход | Парал- лельно | вход |
Р (Н) | 400 | 500 | 600 | 700 | 800 | 900 | 1000 | 1100 | 1200 | 1300 |
Pн | 3,9 | 3,9 | 3,9 | 4,3 | 4,3 | 4,3 | 4,3 | 4,5 | 4,5 | 4,5 |
Vmin (м/с) | 0,2 | 0,2 | 0,2 | 0,2 | 0,2 | 0,3 | 0,3 | 0,2 | 0,3 | 0,4 |
Vmax (м/с) | 0,6 | 0,6 | 0,8 | 0,8 | 0,8 | 0,8 | 0,8 | 0,6 | 0,6 | 0,8 |
Указания:
Коэффициент поршневого действия гидропередачи при скорости Vc=Vmax определён следующим образом:
(1)где Q-расход на насосе.
Полезная мощность гидронасоса:
NH = PH Q (2)
С другой стороны расход при известном к.п.д. (выражение I) определяется как:
Qmax = Vmax S1 (3)
Qmin = Vmin S1 (4)
где S1 – площадь цилиндра, рассчитанная при Vn = Vmax. Этот же расход поступает в рабочую полость гидроцилиндра.
В случае установки дросселя последовательно, в гидроцилиндр, расход пропорционален сечению дроссельного отверстия, т.е.
Qдр = Q = μ Sдр
(5)где Sдр – одно из двух значений сечения дросселя; sp – перепад давлений на дросселе.
Если дроссель установлен последовательно на входе, то ΔP = PH – P1,
где P1 – давление в бесштоковой полости гидроцилиндра, которое может быть найдено из уравнения силового баланса:
P1S1 = P2S2 +
+ T (6)где Т – сила трения в манжетах, которая для манжет шевронного типа равна:
T = π D h τ (7)
где D – диаметр уплотнения; h – толщина уплотнения h = 0.2 Dr; τ – напряжение трения манжет τ = 0,22 МПа.
В уравнении (5), поскольку мы пренебрегаем сопротивлением магистрали, ρ2 = 0, т.е. второй член суммы равен 0.
В случае установки дросселя последовательно на выходе Δ ρ = ρ2, т.к. мы пренебрегаем сопротивлением магистрали за дросселем.
Уравнение же силового баланса для этого случая запишется следующим образом:
PHS1 = P2S2 +
+ T (8)В случае установки дросселя параллельно уравнение силового баланса принимает следующий вид:
PHS1 =
+ T (9)Часть жидкости от насоса попадает в цилиндр. Расход этой жидкости равен:
QЦ = Vmax S1 (10)
Часть жидкости сливается через дроссель. Расход равен:
QДР = μ SДР
(11)Причем Δ P = PH
Насос следует выбирать из условия обеспечения максимальной скорости движения поршня, имея ввиду, что
QH = QЦ + QУР (12)
Максимальная скорость будет очевидно при SДР = 0, а минимальной соответствует соотношение:
S1Vmax = S1Vmin + μ SДРmax
(13)Задача 2
Скорость ротационного гидромотора регулируется установкой дросселя регулятора на выходе гидромотора (Рис. 2)
Рис. 2
Гидромотор удельной производительностью g развивает на выходном валу максимальный момент M [Нм]. В качестве привода гидромотора используется гидравлический насос. Давление рабочей жидкости, в качестве которой используется масло индустриальное плотностью ρ = 0,88.103 кг/м3, равно 3,9 МПа = 3,9.106 Н/м2.
Спроектировать гидропередачу, обеспечивающую скорость ротационного гидромотора в пределах от nmax до nmin . Вычертить схему гидропередачи. Определить полезную мощность гидронасоса NH и максимальный к.п.д. ηmax гидропередачи. Определить эффективные площади сечения дросселя регулятора SДРmin при nmin и SДРmax при nmax. Коэффициент расхода дросселя принять постоянным и равным μ = 0,4. Сопротивлением гидромагистрали кроме сопротивления дросселя пренебречь. Указать возможность повышения к.п.д. гидропередачи.
Исходные данные
№ вар | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
М[Нм] | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
g [м2] 10-4 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 |
nMIN[об/с] | 5 | 5 | 7 | 7 | 6 | 6 | 8 | 8 | 8 | 8 |
nMAX[об/с] | 20 | 18 | 18 | 15 | 18 | 15 | 16 | 16 | 15 | 16 |