Тяговые подстанции являются высоконадежными системами, так как они в большинстве случаев имеют продольное секционирование сборных шин и часто оборудуются даже двумя, а иногда и большим числом систем сборных шин. На практике отсутствие напряжения на фидерах, питающих контактную сеть, возможно по двум причинам: в результате отключения напряжения 110кВ сети первичного электроснабжения или в связи с выходом из строя трансформаторов 110кВ/15кВ. Такое оборудование подстанций, как сборные шины, разъединители и силовые выключатели, настолько редко приводит к выходу из строя тяговых подстанций, что в дальнейшем в качестве причины выхода не рассматривается.
Случаи полного выпадения тяговой подстанции очень редки. В качестве средней продолжительности нерабочего состояния подстанции в ряде исследований называют величину 2,4мин/год. Точными данными DBAG не располагают, более того, не ведется статистика отказов трансформаторов, которые выходят из строя крайне редко. На базе анализа результатов различных исследований были приняты следующие значения для отказов в расчете на 100км линий электропередачи в год:
· для линий напряжением 110кВ, частотой 162/3Гц- 0,175 выходов из строя;
· для трансформаторов 110кВ/15кВ- 0,08 отказов.
Для использования в расчетах приняты также величины затрат времени в часах на ввод в строй после отказов в расчете на 100км линий:
· линий напряжением 110 кВ- 6- 10ч;
· трансформаторов- 20- 40ч.
Эксплуатационная готовность линий электропередачи и тяговых подстанций рассмотрена на примере опорной подстанции. На рисунке показаны структура симметричной сети, графы состояний системы и процесс определения этих состояний.
Рис. 1 Структура и графы состояний опорной тяговой подстанции: |
На базе графов состояний и переходов от одного состояния к другому можно составить систему дифференциальных уравнений, при помощи которой с использованием приведенных ранее величин времени выхода из строя и максимальной продолжительности восстановления отказавших линий 110кВ и трансформаторов вычисляется длительность нахождения в нерабочем состоянии (эксплуатационная неготовность) этих компонентов системы электроснабжения. Она составляет 0,07мин/год.
Если при прочих равных условиях подстанция подключена к системе 110кВ как тупиковая и в то же время имеет упрощенное блочное исполнение, то при тех же значениях продолжительности ремонта длительность нахождения вне эксплуатации составит 4,4мин/год; при минимальных значениях продолжительности ремонтов этот показатель уменьшается до 2,6 мин/год. Расчетные значения достаточно близко совпадают с результатами, полученными при обработке статистических данных.
1.1.1. Передача электроэнергии
Электроэнергия, вырабатываемая генератором, отводится к повышающему трансформатору по массивным жестким медным или алюминиевым проводникам, называемым шинами. Шина каждой из трех фаз изолируется в отдельной металлической оболочке, которая иногда заполняется изолирующим элегазом (гексафторидом серы).
Трансформаторы повышают напряжение до значений, необходимых для эффективной передачи электроэнергии на большие расстояния.
Генераторы, трансформаторы и шины соединены между собой через отключающие аппараты высокого напряжения – ручные и автоматические выключатели, позволяющие изолировать оборудование для ремонта или замены и защищающие его от токов короткого замыкания. Защита от токов короткого замыкания обеспечивается автоматическими выключателями. В масляных выключателях дуга, возникающая при размыкании контактов, гасится в масле. В воздушных выключателях дуга выдувается сжатым воздухом или применяется «магнитное дутье». В новейших выключателях для гашения дуги используются изолирующие свойства элегаза.
Для ограничения силы токов короткого замыкания, которые могут возникать при авариях на ЛЭП, применяются электрические реакторы. Реактор представляет собой катушку индуктивности с несколькими витками массивного проводника, включаемую последовательно между источником тока и нагрузкой. Он понижает силу тока до уровня, допустимого для автоматического выключателя.
С экономической точки зрения, наиболее целесообразным, на первый взгляд, представляется открытое расположение большей части высоковольтных шин и высоковольтного оборудования электростанции. Тем не менее все чаще применяется оборудование в металлических кожухах с элегазовой изоляцией. Такое оборудование необычайно компактно и занимает в 20 раз меньше места, нежели эквивалентное открытое. Это преимущество весьма существенно в тех случаях, когда велика стоимость земельного участка или когда требуется нарастить мощность существующего закрытого распредустройства. Кроме того, более надежная защита желательна там, где оборудование может быть повреждено из-за сильной загрязненности воздуха.
Для передачи электроэнергии на расстояние используются воздушные и кабельные линии электропередачи, которые вместе с электрическими подстанциями образуют электросети. Неизолированные провода воздушных ЛЭП подвешиваются с помощью изоляторов на опорах. Подземные кабельные ЛЭП широко применяются при сооружении электросетей на территории городов и промышленных предприятий. Номинальное напряжение воздушных ЛЭП – от 1 до 750 кВ, кабельных – от 0,4 до 500 кВ.
1.1.2. Распределение электроэнергии
На трансформаторных подстанциях напряжение последовательно понижается до уровня, необходимого для распределения по центрам электропотребления и, в конце концов, по отдельным потребителям. Высоковольтные ЛЭП через автоматические выключатели присоединяются к сборной шине распределительной подстанции. Здесь напряжение понижается до значений, установленных для магистральной сети, разводящей электроэнергию по улицам и дорогам. Напряжение магистральной сети может составлять от 4 до 46 кВ.
Рис. 2 ТРАНСФОРМАТОРНАЯ ПОДСТАНЦИЯ близ Бергена (Норвегия).
На трансформаторных подстанциях магистральной сети энергия ответвляется в распределительную сеть. Сетевое напряжение для бытовых и коммерческих потребителей составляет от 120 до 240 В. Крупные промышленные потребители могут получать электроэнергию с напряжением до 600 В, а также с более высоким напряжением – по отдельной линии от подстанции. Распределительная (воздушная или кабельная) сеть может быть организована по звездной, кольцевой или комбинированной схеме в зависимости от плотности нагрузки и других факторов. Сети ЛЭП соседних электроэнергетических компаний общего пользования объединяются в единую сеть.
1.2. Электроснабжение электрических железных дорог
Электрифицированные железные дороги в нашей стране получают электроэнергию от энергосистем.
Энергосистема – это совокупность крупных электрических станций, объединены линиями электропередачи и совместно питающих потребителей электрической и тепловой энергией. Энергосистемы объединяют электростанции различных типов: тепловые, где используются разнообразные виды органического топлива, гидравлические и атомные.
Рис. 3 Общий вид электрифицированной железной дороги постоянного тока и питающих её устройств
Следует отметить, что нагрузки электрической тяги отличаются большой равномерностью, а это способствует более стабильной работе энергосистем. От Единой энергетической системы нашей страны питаются электрические магистрали европейской части страны, Урала, Сибири. Питание от мощных энергосистем обеспечивает бесперебойность снабжения электроэнергией потребителей, в том числе и электрического подвижного состава.
На рис. 3 изображена в несколько упрощенном для наглядности виде общая схема электроснабжения электрифицированной железной дороги условно от одной тепловой электростанции.
Трехфазный переменный ток напряжением 6—10 кВ от генераторов электростанции по кабелю проходит к повышающему трансформатору, здесь в зависимости от различных условий напряжение может быть повышено до 20. 35, 110, 220, 330, 500, 750 кВ. Эти номинальные значения напряжений предусмотрены действующими в СССР стандартами.
Затем ток по линии электоопередачи (ЛЭП) проходит к потребителям, в данном случае к тяговой подстанции. Если произойдет короткое замыкание на линии электропередачи или возникнут недопустимые перегрузки, высоковольтный выключатель отключит ее от электрической станции. Этот же выключатель используют для снятия напряжения с линии, например, при ее осмотре.
Далее ток проходит через другой высоковольтный выключатель в первичную обмотку трансформатора тяговой подстанции, который понижает напряжение переменного трехфазного тока до значения, необходимого1 для нормальной работы электроподвижного состава (э. п. с).