Смекни!
smekni.com

Типы, состав и размещение судовых энергетических установок (стр. 6 из 9)

Все современные судовые АЭУ используют тепло, выделяющееся при делении ядерного горючего для образования пара, или нагрева газа, поступающих затем в паровую или газовую турбины.

Основное звено атомной паро-производящей установки АППУ — реактор, в котором происходит ядерная реакция. В качестве ядерного горючего используют различные расщепляющиеся вещества, у которых процесс деления ядер сопровождается выделением большого количества энергии. К таким веществам относятся изотопы урана, плутония и тория. Наиболее важными элемен­тами судовых реакторов являются (рис. 9.22): активная зона, в которой размещены урановые стержни и замедли­тель, необходимый для поглощения энергии выделяющихся при распаде ядер частиц нейтронов; отражатель нейтронов, возвращающий в активную зону часть вылетевших за ее пределы нейтронов; теплоноситель для отбора из активной зоны тепла, выделяющегося при делении урана, и передачи этого тепла дру­гому рабочему телу в теплообменнике; экран биологической за­щиты, препятствующий распространению вредных излучений реактора; система управления и защиты, регулирующая течение реакции в реакторе и прекращающая ее в случае аварийного роста мощности.

Рис. 9.22. Схема ядерного ре­актора.

/ — активная зона; 2 — урановые стержни; 3 — замедлитель; 4 — отражатель; 5 — теплоноситель; 6 — биологическая защита; 7 — тепловой экран; 8 — система ре­гулирования

Замедлителем в ядерных реакторах служит графит, тяжелая и обычная вода, а теплоносителем — жидкие металлы с низкой температурой плавления (натрий, калий, висмут), газы (гелий, азот, углекислый газ, воздух) или вода.

В судовых АЭУ получили распространение реакторы, у кото­рых и замедлителем и теплоносителем является дистиллированная вода, откуда и произошло их название водо-водяные реакторы. Эти реакторы проще по устройству, компактнее, надежнее в ра­боте, чем другие типы, и дешевле.

Рис. 9.23. Тепловые схемы ядерных энергетических установок: а – одноконтурная; б – двухконтурная; в – трехконтурная. 1 – реактор 2 – турбина 3 – конденсатор 4 – циркуляционный насос 5 – парогенератор 6 – конденсатный насос 7 – система подогрева фильтрации и подпитки 8 – питательный насос 9 – теплообменник 10 – биологическая защита

В зависимости от способа передачи тепловой энергии от реак­тора исполнительному механизму (турбине) различают однокон­турную, двухконтурную и трехконтурную схемы АЭУ.

По одноконтурной схеме (рис. 9.23, а) рабочее вещество — паробразуется в реакторе, откуда поступает непосредственно в турбину и из нее через конденсатор с помощью циркуляционного насоса возвращается в реактор.

По двухконтурной схеме (рис. 9.23, б) циркулирующий в реак­торе теплоноситель отдает свое тепло в теплообменнике — паро­генераторе — воде, образующей пар, который поступает в тур­бину. При этом теплоноситель пропускают через реактор и паро­генератор циркуляционным насосом или воздуходувкой, а образующийся в конденсаторе турбины конденсат прокачивают конденсатным насосом через систему подогрева, фильтрации и подпитки и питательным насосом снова подают в парогенератор.

Трехконтурная система (рис. 9.23, в) представляет собой двухконтурную схему с включенным между первым и вторым контурами дополнительным промежуточным контуром.

Одноконтурная схема требует биологической защиты вокруг всего контура, включая и турбину, что усложняет обслуживание и управление и повышает опасность для экипажа. Безопаснее двухконтурная схема, так как здесь второй контур уже не опасен для экипажа. Поэтому на атомных судах почти всегда применяют двухконтурные схемы. Трехконтурные схемы используют в том случая, если теплоноситель в реакторе сильно активируется и его необходимо тщательно отделить от рабочего вещества, для чего и предназначен промежуточный контур.

Интересны атомные газотурбинные установки, в которых теплоносителем и рабочим телом является газ гелий. Нагретый в реакторе до 700о газ сжимается компрессором и под давлением примерно 4,0 МПа (40 кгс/см2) подводится к двухкорпусной газовой турбине. При этом ТВД приводит в действие компрессор, а ТНД работает на гребной винт. Гелий под действием облучения в реакторе не становится радиоактивным, поэтому отпадает необходимость в биологической защите гелиевого контура. Однако гелий дефицитен, дорог и отличается большой текучестью, что требует особых уплотнительных устройств.

Опыт эксплуатации первых судов с АЭУ подтвердил их высокие эксплуатационно-технические качества, а постепенное снижение стоимости этих установок и ядерного горючего позволит сделать атомные суда вполне конкурентоспособными с обычными судами. Кроме того, по мере роста скорости морских транспортных судов и связанного с этим значительного увеличения мощности главного двигателя и массы запасов топлива (особенно при боль­шой дальности плавания) эксплуатационно-экономические пре­имущества судов с АЭУ будут возрастать. Расчеты показывают, что при мощности судовой энергетической установки более 45 000— 75 000 кВт суда с АЭУ становятся более выгодными, чем суда с обычными СЭУ. Именно поэтому в последнее время в ряде стран разработаны проекты новых крупных транспортных судов (кон­тейнеровозов, танкеров и т. п.) и мощных ледоколов с АЭУ, а в Советском Союзе в 1988 г. построен ледокольно-транспортный лихтеровоз — контейнеровоз «Севморпуть» с АЭУ.

Валопровод

Валопровод предназначен для передачи крутящего момента (мощ­ности) от главного двигателя к движителю, а также для вос­приятия упорного давления, создаваемого движителем, и пере­дачи его от движителя корпусу судна. Это сложная и ответствен­ная конструкция из нескольких жестко соединенных между собой валов, опирающихся на подшипники, установленные на спе­циальных опорах — фундаментах. Валопровод изгибается вместе с изгибом корпуса судна и испытывает при вращении вокруг своей оси большие знакопеременные нагрузки. В связи с этим к конструкции, прочности и качеству монтажа этого важнейшего узла, обеспечивающего ход судна, предъявляются особенно высо­кие требования, несоблюдение которых может привести к серьез­ным повреждениям судна.

Основными элементами валопровода являются (рис. 9.25): гребной вал, проходящий через ахтерпик внутрь корпуса судна и предназначенный для крепления гребного винта; вал имеет бронзовую облицовку, защищающую его от коррозии; промежу­точные валы, соединенные между собой гребным валом и двигателем с помощью фланцев (носовой промежуточный вал с гребнем, посредством которого передается упорное давление упорному подшипнику, называют упорным валом); главный упорный под­шипник для восприятия упорного давления, создаваемого греб­ным винтом; опорные подшипники, служащие опорами для про­межуточных валов; дейдвудное устройство, являющееся опорой для гребного вала и предназначенное для уплотнения места выхода гребного вала из корпуса судна.


Рис. 9.25. Элементы валопровода.

/ — гребной вал; 2 — промежуточный вал; 3 — упорный вал; 4 — главный упор­ный подшипник; 5 — опорный подшипник; 6 — переборочный сальник; 7 — дейд-вудное устройство

Длина валопровода зависит от размеров судна и места рас­положения главных двигателей. На судах с кормовым расположе­нием МКО длина валопровода равна 16—20 м. У крупных судов со средним расположением МКО протяженность валопровода равна 50—70 м. В этом случае валопровод проходит через коридор гребного вала, защищающий его от повреждений.

Рис. 9.26. Дейдвудное устройство.

/ — яблоко ахтерштевня; 2 — бакаутовая набивка; 3 — переборка ахтерпика; 4 — сальник; 5 — сальниковая набивка; 6 — носовая латунная втулка; 7 — дейдвудная труба; 8 — кормовая латунная втулка; 9 — гайка

Наиболее ответственным узлом валопровода является д е й д-вудноеустройство (рис. 9.26). Оно состоит из дей-двудной трубы, закрепляемой одним концом в вырезе водонепро­ницаемой переборки ахтерпика, а другим в отверстии яблока ахтерштевня; двух подшипников в виде латунных втулок, вну­тренняя поверхность которых облицована бакаутом; сальника на переборке ахтерпика, препятствующего попаданию воды через дейдвудную трубу внутрь корпуса.

Бакаут, которым облицовывают дейдвудные втулки, — редкое дерево, обладающее высокой прочностью и способностью смазы­ваться водой, благодаря чему бакаутовые подшипники, смоченные водой, не требуют смазки. Однако из-за высокой стоимости и де­фицитности бакаут теперь заменяют другими материалами — текстолитом, лигнофолем, туфнолом. В качестве подшипников применяют также резинометаллические вкладыши. В последнее время на крупных судах стали применять металлические (бабби­товые) подшипники, смазываемые маслом и имеющие специальные патентованные уплотнения.

Судовые движители

Движителем называют такое судовое устройство, которое, исполь­зуя работу двигателя, создает в воде упор — силу, способную двигать судно в заданном направлении.

Движители судов с механическим двигателем делятся на лопа­стные и водометные.

К числу лопастныхсудовыхдвижителей относятся гребные вингы, крыльчатые движители и гребные ко­леса, создающие силу упора за счет отбрасывания своими лопа­стями струи воды в сторону, противоположную движению судна. Водометныедвижителисоздают упор за счет отбра­сывания воды, забранной специальным насосом. Так как и лопа­стные, и водометные движители создают движущую силу за счет реакции отбрасываемых назад масс воды, их называют реак­тивными.Среди судовых движителей наибольшее распро­странение получили гребные винты.