горизонтальные однокорпусныеи многокорпусные, активныеи реактивные.
Рис. 9.7. Продольный разрез турбины; а — высокого давления (ТВД); б — низкого давления (ТНД).
/ — статор с направляющим аппаратом; 2 — ротор; 3 — опорные подшипники; 4 — уплотнения; 5 — упорные подшипники; 6 — диски с рабочими лопатками; 7 — фундаментная рама
Вертикальные турбины в качестве главных двигателей не применяют, их используют для привода к некоторым вспомогательным механизмам — насосам, вентиляторам и пр.
Степень использования энергии пара в турбине зависит от разности давления пара при входе и выходе из нее. Так как уменьшение давления пара связано с увеличением его объема и, следовательно, размеров турбины, паровые турбины мощностью более 3500—7500 кВт изготовляют двух- и трехкорпусными. В многокорпусных турбинах корпуса соединяются последовательно одним паропроводом: пар, проходя через первый корпус —турбину высокого давления (ТВД), снижает давление до некоторой средней величины, затем под этим давлением поступает в следующий корпус—турбину среднего давления (ТСД), а оттуда под еще меньшим давлением — в турбину низкого давления (ТНД). В последнее время для повышения экономичности паротурбинной установки применяют схемы с промежуточным перегревом пара, которые позволяют увеличить КПД на 4—5 %. Экономический КПД паротурбинных установок с обычной схемой без промежуточного перегрева равен 28—31 %.
Если расширение пара и связанное с этим увеличение скорости струи происходит только в неподвижном направляющем аппарате турбины, то турбину называют активной. Если же расширение струи пара происходит также и в рабочем колесе при прохождении пара между лопатками, имеющими в этом случае специальный профиль, то такую турбину называют реактивной.
Особенностью паровой турбины является ее способность вращаться только в одну сторону. Поэтому для обеспечения судну заднего хода (реверса) устанавливают турбинузаднегохода,мощность которой составляет 40—50 % мощности турбины переднего хода. Ее размещают либо в отдельном агрегате (на крупных судах), либо на одном валу с турбиной низкого Давления переднего хода в ее же корпусе. Направляя пар в ту или другую турбину, получают передний или задний ход судна. На паротурбинных судах с винтом регулируемого шага (ВРШ), позволяющим изменить ход судна переменной угла поворота лопостей без изменения направления вращения гребного винта, турбину заднего хода не предусматривают (на крупнотоннажных танкерах типа «Крым»).
Паровая турбина является быстроходным механизмом, совершающим до 6000 об/мин. Поэтому, чтобы частота вращения тихоходного винта составляла 80—200 об/мин, необходимо иметь специальную передачу. Чаще всего для этой цели используют зубчатую передачу—зубчатый редуктор, обычно двухступенчатый. Паровая турбина с редуктором образуют главный турбо-зубчатый агрегат (ГТЗА).
Рис. 9.8. Схема ГТЗА с двухкорпусной турбиной и двухступенчатым зубчатым редуктором
Пар из котлов поступает по главному паропроводу в турбину высокого давления (рис. 9.8), из нее по перепускной трубе (ресиверу) в турбину низкого давления и далее в конденсатор. Для регулирования мощности и частоты вращения турбины на паропроводах ставят паровыпускные клапаны, распределяющие поступающий пар по группам сопл. С переднего хода на задний и наоборот переходят, изменяя подвод пара с помощью маневровых клапанов. Кроме того, на пути движения пара от котла к турбине устанавливают стопорный, быстрозапорный и разобщительные клапаны. Для проворачивания турбин и редуктора перед пуском (и систематически во время стоянки — при прокачке масла через подшипники) ГТЗА снабжают валоповоротным устройством с приводом от электродвигателя. Частота вращения вала ГТЗА валоповоротным устройством — около 1 об/мин.
Конденсатор, куда поступает отработавший пар из турбины низкого давления, служит для обратного превращения (конденсации) этого пара в воду путем охлаждения и повторного использования конденсата (воды) для питания главных котлов. Кроме того, благодаря созданию в конденсаторе разрежения (вакуума), увеличивается перепад давлений рабочего пара, что позволяет улучшить использование тепловой энергии пара и увеличить мощность турбины.
На морских судах с паротурбинными установками применяют конденсаторыповерхностноготипа,представляющие собой теплообменные аппараты в виде корпуса, внутри которого находятся трубки, прокачиваемые холодной забортной водой с помощью циркуляционного насоса или самопротоком, используя скоростной напор воды от движения судна. Применение самопроточной циркуляции сокращает количество вспомогательных механизмов и повышает на 1—2 % КПД установки. Отработавший пар, поступающий из турбины низкого Давления в корпус конденсатора, омывает трубки с холодной забортной водой и охлаждается, конденсируется и снова превращается в воду. Скапливающуюся в нижней части конденсатора воду откачивают конденсатным насосом в питательную систему главного котла. Обычно главный конденсатор устанавливают непосредственно под турбиной низкого давления.
Для подачи смазки к подшипникам роторов турбины и валов шестерен редуктора предусматривают системусмазки, состоящую из масляных насосов, фильтров, сепаратора, маслоохладителей, сточной цистерны и трубопроводов. Схема общей компоновки паротурбинной установки мощностью 14 000 кВт приведена на рис. 9.9.
В настоящее время в ряде стран проводятся работы, направленные на создание высокоэкономичных ПТУ, способных конкурировать по затратам топлива с дизельными установками. Это достигается применением ПТУ с высокими начальными параметрами пара, промежуточным перегревом пара и подогревом питательной воды, у которых в будущем удельный расход топлива может быть снижен до 225—230 г/(кВт-ч).
Рис. 9.9. Общее расположение механизмов в машинном отделении турбинного танкера «Рихард Зорге».
Двигатели внутреннего сгорания и дизельные установки
Двигатели внутреннего сгорания (ДВС) — это поршневые тепловые двигатели, в которых сгорание топлива и превращение тепловой энергии в механическую происходит непосредственно внутри рабочего цилиндра (рис. 9.10). Рабочим телом в этом случае является смесь газов, образующихся при сгорании топлива. Расширяясь в цилиндре, газы давят на поршень, который, перемещаясь под давлением газов вниз, с помощью шатуна передает движение коленчатому валу; последний преобразует возвратно-поступательное движение поршня во вращательное, передаваемое гребному валу с насаженным на него гребным винтом. В верхней части цилиндра размещается распределительный механизм, состоящий из клапанов с приводами и предназначенный для обеспечения всасывания воздуха и выпуска отработавших газов.
Рис. 9.10. Четырехтактный двигатель внутреннего сгорания.
/ — цилиндр; 2 — поршень; 3 — впускной клапан; 4 — коромысло; 5 — топливная форсунка; 6 — выпускной клапан; 7 — шток; 8 — распределительный вал; 9 — станина; 10 — коленчатый вал; 11 — судовой фундамент; 12 — фундаментная рама; 13 — шатун
Неподвижная часть ДВС, на которую опираются цилиндры, называется станиной. Станина, в свою очередь, опирается на фундаментную раму. Нижняя часть ста нины вместе с фундаментной рамой образует картер.
Рабочий процесс, совершающийся в цилиндре ДВС, состоит из последовательно сменяющих друг друга процессов: всасывания воздуха в цилиндр, сжатия воздуха в цилиндре, впрыска топлива, воспламенения и расширения горячих газов в цилиндре (рабочий ход) и выхлопа отработавших газов.
Если один рабочий процесс двигателя совершается за четыре хода поршня из одного крайнего положения в другое (сверху вниз и наоборот), то такой двигатель называют четырехтактным (рис. 9.11); если за два хода —двухтактным (рис. 9.12).
рис. 9.11. Схема работы четырехтактного двигателя.
/ _- всасывание воздуха; ц — сжатие (в конце сжатия впрыск и воспламенение топлива); /// — рабочий ход (расширение горючих газов); IV— выхлоп отработавших газов
В двухтактном двигателе процесс выхлопа отработавших газов и всасывания воздуха начинается в конце рабочего хода поршня и заканчивается в начале хода сжатия. Выхлоп отработав ших газов осуществляется через продувочные окна, открываемые поршнем в конце рабочего хода и закрываемые им в начале хода сжатия.
Рис. 9.12. Схема работы Двухтактного двигателя.
в — продувка (выхлоп и всасывание); 16 — сжатие; 1а — впрыск топлива и рабочий ход; Пб — окончание Рабочего хода и продувка
Кроме того, все двигатели внутреннего сгорания подразделяют на двигатели: простого и двойного действия — в зависимости от того, совершается ли рабочий цикл только в верхней полости цилиндра или в обеих полостях; тихоходные и быстроходные — в зависимости от средней скорости движения поршня (менее 6,5 м/с — тихоходные); малооборотные (не более 150—250 об/мин) и среднеоборотные (300—600 об/мин); крейцкопфные и тронко-вые — в зависимости от конструкции шатунного механизма (крейц-копфные двигатели имеют шатун с ползуном, тронковые — не имеют); карбюраторные и дизели — в зависимости от способа воспламенения топлива (у карбюраторных двигателей топливо воспламеняется от электрической искры, у дизелей — самовоспламеняется благодаря повышению температуры воздуха внутри цилиндра от сжатия); компрессорные и бескомпрессорные — в зависимости от способа распыливания топлива; нефтяные, керосиновые, бензиновые, газогенераторные — в зависимости от рода применяемого топлива.