Смекни!
smekni.com

Детали машин 4 (стр. 1 из 9)

Расчеты на прочность. Виды циклов.

Контактное напряжение dH = F/A = сила / площадь. Напряжение сжатия/растяжения определяется как dСМ=F/A = £ [d], A = F/[d].

Напряжение среза tСР = F/A = срезающая сила / площадь среза.

Напряжение изгиба dF=M/W = изгибающий момент / полярный момент сопротивления сечения изгибу W=0,1×d3.

tКР =TКР/WP , где WP = 0,2d3 – полярный момент сопротивления сечения изгибу.

По характеру действия напряжения могут быть:

– Переменное напряжения, представляющее собой знакопеременный асимметричный цикл

dm = (dmax+dmin) /2– среднее значения напряжения цикла , dA = (dmax–dmin) /2 – амплитуда напряжения. Коэффициент асимметрии цикла Rd = dmin / dmax.

– Частные случаи

статический (Rd = 1)

отнулевой (Rd = 0)

симметричный (Rd=­ –1)

Физико-механические свойства материалов

dT – предел текучести для пластичных материалов

dВ – предел прочности для хрупких материалов

d-1 – предел выносливости

E – модуль упругости

HB – твердость по Бринелю

HRC – твердость по Роквеллу

С – удельная теплоемкость

d – относительное удлинение

dLIM делится на две части:

dT – для пластичных материаловdLIM = dT× KDKD – коэффициент влияния абсолютных размеров поперечного сечения dВ – для хрупких материалов dLIM = dВ×KD / KSKS – коэффициент влияния концентратов напряжения.

Запас прочности n = dLIM /dD³ [n]

n = d-1 / (Kdd×dA+yd), где Kdd – коэффициент смещения пределов выносливости, yd – коэффициент чувствительности материала.

Kd – масштабный фактор, KF – шероховатость, KV – фактор упрочняющей поверхности.

Расчет на долговечность.

Расчет ведется по кривой усталости, построенной в координатах d(N), где N – число циклов работы деталей.

d-1 – длительный предел выносливости.

Ni – циклическая долговечность

m зависит от материала, от вида нагружения и устанавливается экспериментально.

Уравнение кривой усталости: dim×Ni= C(const). Используется при расчете зубчатых, червячных и подшипниковых передач.

Вероятностный расчет на прочность

Расчет по эквивалентному числу циклов.

Эквивалентное число циклов равно NE=mP×NS, где mP – коэффициент режима работы, равный mP = 1/a×S[(Ni/ NS) × (di/dmax)m]. NS = 60×nЗ× (Sni×ti)×gn, где nЗ – число циклов нагружения за 1 оборот (в зуб. передачах). Sni×ti – число циклов нагружения в течение суток, g – число рабочих дней в году, n – срок службы детали в годах. mP = S×ti/tdn×(Ti/Tmax)p, NS=60 ×nЗ×n×tS, tS – ресурс работы, n – частота вращения вала.

Последовательность проектирования

1. выбор принципиальной схемы механизма

2. выбор материала

3. расчет основных размеров деталей механизма по тем критериям работоспособности, которые являются в данном случае наиболее важными

4. проведение проверочных расчетов по всем основным критериям работоспосбности

Виды механических передач.

По принципу передачи вращения С постоянным контактом С гибкой связью
Трением Фрикцион. Ремен.
Зацеплен. Зубчатые, червяные, винтовые и др. Цепные, ременно-зубчатые

Передачи могут быть понижающие – редукторы и повышающие – мультипликаторы. Передаточное число определяется отношением w1/w2 = n1/n2, 1 – ведущее, 2 – ведомое. По числу степеней передачи делятся на:

– бесступенчатые (вариаторы)

– одноступенчатые

– многоступенчатые (с помощью зуб. колес, либо ременными передачами со ступенчатыми шкивами).

В зависимости от расположения валов различают передачи:

1) с параллельными валами:

– зубчатые передачи

– фрикционные передачи

– ременные передачи

– цепные передачи

2) с пересекающимися валами

– коническая передача

3) с перекрещивающимися валами

– червячные передачи

– винтовые передачи

Виды механических

передач

1) фрикционные передачи

Преимущества:

– простота конструкции

– постоянство угловой скорости

– возможность применения для бесступенчатого регулирования угловой скорости

– бесшумность работы

Недостатки:

– большие нагрузки на валы Þ низкий КПД

– большие габариты (больше, чем у зубчатых при одном и том же передаточном отношении)

– большое тепловыделение

2) Зубчатые передачи

Преимущества:

– небольшие габариты

– высокая несущая способность (моменты, скорости частоты)

– высокий КПД

– постоянство передаточного отношения

Недостатки:

– требует высокой точности изготовления

– требуют хорошей смазки

– шумная работы

3) Червячные передачи

Преимущества:

– плавность работы

– мыле габариты при большом пер. отношении

Недостатки:

– низкий КПД

– нагрев

– износ зубьев

– применение дорогостоящих материалов

4) Ременные передачи

Преимущества:

– простота и бесшумность

– возможность большого межосевого расстояния

– возможность бесступенчатого регулирования.

– предохраняют от перегрузки

Недостатки:

– невысокая нагрузочная способность

– низкий ресурс ремня

– непостоянство передаточного отношения

5) Цепные передачи

Достоинства:

– возможность применения в значительном диапазоне межосевых расстояний

– габариты, меньшие, чем у ременной передачи

– отсутствие проскальзывания

– высокий КПД

– малые силы, действующие на валы

Недостатки:

– работает в условиях отсутствия жидкостного трения

– требует большой степени точности установки валов

– неравномерность хода цепи

Порядок расчета привода

1) Подбор электродвигателя

а) мощность на приводном валу;

б) КПД всей цепи (hзуб=0,96,

hцеп­= 0,93);

в) Ориентировочная потребная мощность электродвигателя;

г) Выбираем двигатель по каталогу по значению ориентировочно потребной мощности.

2) Частота вращения приводного вала n = 60V /pd;

3) Определяем значение Uобщ = nел.дв /

nпр.вала;

4) Находим передаточное число каждой из передач;

5) Определяем частоты вращения каждого из валов (начиная с первого – ел. двигателя);

6) Находим мощность на каждом валу (начиная с последнего – приводного);

7) Определяем вращающиеся моменты на валах (T1=9550 ×P1/n1, Ti= Ti-1×Uпер×hпер);

8) Находим диаметры валов;

ЗУБЧАТЫЕ ПЕРЕДАЧИ

Достоинства:

– Компактность

– Высокий КПД