– вызывает эксцентричность нагружения в месте посадки детали
Существует 2 вида шпоночных соединений:
– ненапряженное (призматическими, сегментными или круглыми шпонками)
– напряженное (штифтами или призматическими шпонками)
Шпоночные пазы в ступице выполняются давлением или протягиванием, на валу фрезерованием пальцевой или дисковой фрезой. |
Соединение сегментными шпонками
По принципу работы схожы с призматическими, но обладают некоторыми преимуществами.
– Пазы на валах обрабатываются дисковыми фрезами большей производительностью
–Крепление шпонок на валу надежнее из-за большей глубины врезания.
Недостаток:
– значительно ослабляет вал
Соединение цилиндрическими
шпонками
Как правило, для соединения венца со ступицей колеса. Шпонка может быть гладкой или нарезной. Центр шпонки должен быть смещен в сторону более слабого материала на величину e.
Расчет шпоночного соединения
£[d]СМУзкие шпонки дополнительно рассчитываются на срез:
Шлицевые соединения
Образованы выступами – зубьями на валу, которые входят со впадины-пазы ступицы.
По сравнению со шпоночными соединениями имеют преимущества:
1. Большую нагрузочную способность
2. Более высокое сопротивление усталости вала
3. Лучшую технологичность и точность изготовления
Внутренние шлицы получают протягиванием и шлифованием центрирующих поверхностей. Зубья получают фрезерованием червяными фрезами. По форме поперечного сечения различают:
– прямобочные
– эвольвентные
– треугольные
Шлицевые соединения могут быть подвижные и неподвижные.
По типу воспринимаемой нагружки различают соединения нагруженные:
– только вращающим моментом
– вращающим моментом и поперечной силой
– вращающим моментом и изгибающим моментом
– комплексной нагрузкой
Расчет на смятие
£ [d]СМ , где Kg – коэффициент динамичности, KСМ – коэффициент концентрации нагрузки, ℓ – рабочая длина соединения, SF – удельный суммарный статический момент площади рабочих поверхностей соединения относительно оси валаРасчет на износ
, где KИЗН – коэффициент концентрации нагрузкиСоединение деталей с натягом
Соединение с натягом осуществляется одним из способов:
1. с нагревом охватываемых деталей
2. с охлаждением охватываемых деталей
3. запрессовкой
4. с применением гидрораспора (подвод масла под давлением в место сопряжения)
Расчетом находится натяг с подбором соответсвующей посадки. В зависимости от этого определяется осевое усилие при запрессовке или t нагрева (охлаждении) деталей.
РЕЗЬБОВЫЕ СОЕДИНЕНИЯ
Помимо выполнения крепежных функуий винтовые пары широко применяются для преобразования вращательного движения в поступательное, т.е. выполняют роль механизмов.
Достоинства:
– рациональная форма, компактность и конструктивная простота
– высокая несущая способность
– удобство сборки и разборки
– широкие регулировочные возможности
Недостатки:
– уязвимы при переменных нагрузках
– склонность к самоотвинчиванию при вибрациях
Основные параметры резьбы
d – наружный диаметр;
d1 – внутренний диаметр;
d2 – средний диаметр;
£ – угол профиля резьбы;
p – шаг резьбы;
P0 – ширина основания;
x = – P0/P – коэффициент использования резьбы;
H – высота гайки;
t = n0×P – ход резьбы, для однозаходной резьбы t = P
n0 – число заходов;
– угол подъема винтовой линии;При вращении винта на опорной поверхности витка возникает окружная сила трения FТР =FП×f = F×f /[cos(a/2) ×cosy]. Составляющая силы трения на плоскость, перпендикулярную оси винта FТР¢ = FТР×cosy = F×f/ cos(a/2) = F×f¢, где f¢ = f/cos(a/2) – приведенный коэффициент трения в резьбе, f – коэффициент трения пары материалов винта и гайки.
Классификация резьб
По форме поверхности, на которой нанесена резьба:
– цилиндрические
– конические
Конические резьбы обеспечивают без специальных уплотнений герметичность соединения. Применяются для соединения трубопроводов, гидросистем, бензосистем и т.д.
По направлению винтовой линии: правые и левые. Левые применяются в случаях, когда это обусловлено кинематикой механизма и для предохранения самоотвинчивания.
По назначению:
– крепежные, применяемые для резьбовых соединений
– крепежно-уплотнительные (трубопроводы, арматуры)
– резьбы винтовых механизмов (преобразование движения)
По числу винтовых линий: однозаходные и многозаходные.
Характеристика крепежных и крепежно-уплотнительных резьб.
Они бывают метрические и дюймовые. В машиностроении применяются метрические резьбы с крупным и мелкими шагами. Последние предназначены для нарезания на тонкостенных деталях и валах. Они также применяются для регулировки и в случаях ответственных соединений. Применение дюймовых цилиндрических резьб огранивается случаями замены существующих деталей или выполнения необходимых сопряжений с импортными деталями. Дюймовые конические резьбы используют как крепежно-уплотняющие.
Расчет резьб
Под действием осевого усилия F резьбы работают и рассчитываются на:
1) срез условно по сечениям винта и гайки
2) на смятие и износостойкость
Расчет резьб на срез
Уравнение прочности tСР = F/A£ [t]СР» 0,6 [d]P. Здесь площадь среза у винта AВ = pd1×Hx, у гайки AГ = pd×Hx.
Расчет на смятие
На смятие работают и рассчитываются резьбы крепежные изделия, у которых поверхности контакта витков винта и гайки проскальзывают только в процессе затяжки соединения. Площадь смятия принимается как проекция контактной поверхности резьбы на плоскость, нормальную оси винта (перпендикулярную силе F).
AСМ = (pd2/4 – pd12/4) ×H/P, где H/P – число поверхностей смятия (рабочих витков) на высоте гайки H.
Уравнение прочности: dСМ = F/AСМ = 4FP / [p×(d2-d12)H] £ [d]СМ » 0,5 [d]P.
Если крепежное изделие стандартно, то H» 0,8×d из условие прочности резьбы на срез и смятие.
Расчет на износостойкость
На износостойкость рассчитываются подвижно контактирующие резьбы грузовых винтовых механизмов. Расчет ведется по давлению на рабочих поверхностях витков резьбы. p = F /A = 4FP / [p×(d2-d12)H] £ [p], где A – площадь, [p] – допускаемое давление – параметр износостойкости, устанавливаемый опытным путем.
Ограничение высоты гайки
Вследствие различных деформаций болта (неравномерное распределение нагрузки по виткам) целесообразно конструктивно ограничивать высоту гайки H £2,5d. Если по расчету получается больше, то следует увеличить диаметр резьбы.
Расчеты незатянутых и затянутых болтов
При стандартизации деталей резьбовых соединений соотношения их элементов устанавливается так, чтобы лимитирующим фактором была прочность тела болта. Это позволяет при их использовании ограничиться расчетом только болта. В зависимости от условий работы обыкновенные болты могут быть незатянутыми и затянутыми.
Незатянутые болты характеризуются отсутствием начальной затяжки. Здесь расчетной является внешняя осевая сила F. Незатянутые болты работают и рассчитываются на растяжение. Проверочный расчет:
dP = F/A= 4F /(pd12) £ [d]
Проектный расчет: