Производительность промывных насосов может быть определена по формуле:
Qпн = 3,6 qип Fф, м3/ч
где
3,6 — переводной коэффициент;
qHJI — интенсивность промывки, л/(с м2);
Рф — площадь фильтра, м2
Для напорных фильтров D=2,0 м, производительность насоса составляет 156,2 м3/ч; для напорных фильтров D = 1,5 м, производительность составляет 90,7 м3/ч
Для фильтров D = 2,0 и 1,5 м применяются соответственно марки 6К-8У производительностью Qпн =162 м3/ч при давлении 3,25 МПа и К-90/20 производительностью Qпн = 90 м3/ч при давлении 0,2 МПа, при этом должно быть по одному рабочему и одному резервному агрегату. Одновременно должен промываться только один напорный фильтр.
Объем воды, требующийся для промывки напорного фильтра, хранится в резервуаре очищенной воды и может быть определен по формуле:
Vпр = Qпн tпр / 60, м3
где tпр) — время промывки, мин
Для фильтров D = 2,0 м объем промывочной воды составит 16,2 м3; для фильтров D - 1,5 м объем составит 9,0 м3.
Насосная станция гидроуплотнения сальников содержит насосы, необходимые для подачи воды на охлаждение и промывку сальников уплотнения и создания гидравлического затвора во время работы только фекальных насосов ФГС81/31 и ФГ57,5/9,5 под давлением, превышающим давление в напорном патрубке на 0,03 ..0,05 МП а
Наиболее эффективными для этих целей являются насосы ВК-1/16 производительностью Q = 1,1 м3/ч; Р = 0,4 МПа, забирающие воду из резервуара очищенной воды.
4.5 Расчет очистных сооружений но взвешенным веществам
Эффект очистки (Э0), характеризующийся уровнем концентрации в очищенной воде взвешенных веществ (мг/л), по каждому агрегату очистных сооружений может быть определен по формуле (%):
Эо = (В1 – В2 х 100) / В1
где В1,В2 -- концентрация взвешенных веществ в сточных водах соответственно на входе в песколовку и выходе из нее, мг/л.
Для определения эффекта очистки (например на песколовке, рассчитанной на задержание частиц взвесей размером не менее 0,250 мм) воспользуемся приведенными данными:
Гидравлическая крупность:, мм/с Крупность, мм
0,75 0,019
1,00 0,035
1,08 0,036
1,18 0,038
Эффект очистки для сточных вод от мойки легковых — 30 %.
После определения эффекта очистки может быть определена концентрация взвешенных частиц на выходе из песколовки:
В2 = В1(100 – Эо) / 100
Для сточных вод от мойки легковых автомобилей — B 2 = 490 мг/л.
При сравнении фактических данных после безнапорною гидроциклона в сточной воде от мойки легковых автомобилей 14 % взвешенных веществ. В таком случае концентрация взвешенных веществ в сточных водах на выходе из безнапорного гидроциклона составляет:
В2 = 0,14 В1 = 0,14 х 700 = = 98 мг/л для легковых автомобилей.
В результате эффект очистки безнапорного гидроциклона
Эгц = [(490 — 98)/490]100 = 80 % для легковых автомобилей.
Эффект очистки напорных фильтров также составляет 80 %.
Как следует из приведенного расчета, очистные сооружения с безнапорными гидроциклонами отвечают требованиям очистки по взвешенным веществам для повторного использования сточных вод в системе оборотного водоснабжения.
4.6 Расчет очистных сооружений и по нефтепродуктам
В песколовке задерживание нефтепродуктов не предусматривается.
На безнапорных гидроциклонах эффект задержания нефтепродуктов составляет 90 %, при этом остаточная концентрация нефтепродуктов составит для сточных вод от мойки:
легковых автомобилей 0,1 • 75 = 7,5 мг/л.
На напорных фильтрах, в которые вода поступает из безнапорных гидроциклонов с приведенной выше концентрацией нефтепродуктов, эффект их задержания составляет 80...85 %, в расчете принимается 80 %. Тогда остаточное содержание нефтепродуктов в фильтрованной воде (после прохождения напорных фильтров) составит для сточных вод от мойки:
легковых автомобилей 0,2-7,5 = 1,5 мг/л.
4.7 Расчет количества осадка
В песколовке задерживается
30 % - от мойки легковых автомобилей.
Среднесуточное количество задерживаемого осадка (Рос) может быть где
Рос = (В1 – В2 ) Qcyr1000
Qcyr — суточный расход сточных вод от мойки автомобилей, л/сут.
Среднесуточный объем осадка определяется по формуле (м3/сут ):
ос = Рос / Ро
где Рос — плотность выпавшего осадка (принимается в пределах 1500 - 2500 в зависимости от характера взвешенных веществ), мг/м3.
По полученным данным о среднесуточном объеме осадка в соответствии с объемом контейнеров, установленных в песколовке для сбора осадка, определяют периодичность (за сутки) извлечения и вывоза заполненных контейнеров:
Ппер = Мос.сут / Мос.конт
где
Мос.сут , Мос.конт.соответственно объемы осадка среднесуточного и заполняемого контейнера,м3 /сут
В безнапорном гидроциклоне задерживается 80 % взвешенных веществ. Среднесуточное количество задерживаемого осадка, объем выпавшего осадка в безнапорном гидроциклоне определяются по приведенным ранее формулам. Осадок из безнапорного гидроциклона удаляется под гидростатическим напором через специальный патрубок путем открывания задвижки и выпускается в передвижные контейнеры для осадка. В фильтрах напорных задерживаемые взвешенные вещества остаются в фильтрующей загрузке, откуда удаляются промывкой водой. Промывная вода с вымываемыми взвесями отводится в приемный резервуар.
Расчет количества нефтепродуктов. В безнапорных гидроциклонах эффект задержания нефтепродуктов составляет 90 % Суточное количество и объем собранных нефтепродуктов определяются в том же порядке, как и взвешенных веществ, при этом при определении объема нефтепродуктов учитывается их плотность, равная 940 кг/м3
В напорных фильтрах задерживаемые фильтрующей загрузкой нефтепродукты вымываются при промывке фильтров и с промывочной водой отводятся обратно в приемный резервуар.
Список литературы
1. Марков О.Д., Автосервис, рынок, автомобиль, клиент. Москва, Транспорт, 1999 г.
2. Напольский Г.М., Зенченко В.А., Обоснование спроса на услуги автосервиса и технологический расчёт СТО легковых автомобилей. Учебное пособие. Москва, МАДИ, 2000 г.
3. Ахинта В.А., Ванида В.Е. Техническое проектирование АТП и СТО. Воронеж, ВГУ, 1989 г.
4. Дашкэ Э.Р. Техническое проектирование АТП и СТО. Пенза. ПГАСА, 2001 г.
5. Васильев В.И. Основы проектирования технологического оборудования АТП. Курган. КМИ, 1992 г.
6. Фастовцев Г.Ф. Организация тех. обслуживания и ремонт легковых автомобилей. Москва. Транспорт, 1989 г.
7. Безруков Л.В., Беляков В.В., Курсовое и дипломное проектирование колёсных и гусеничных машин. Учебное пособие. Москва, НГТУ, 2000 г.
8. Синельников А.В., Лосавио С.К. Ремонт аварийных кузовов легковых автомобилей. Москва, Транспорт, 2001 г.
9. Вершигора В.А., Игнатов А.П., Автомобили «Жигули», устройство и ремонт. Москва, Транспорт, 1996 г.
10. Методика определения валовых выбросов вредных веществ в атмосферу основным технологическим оборудованием предприятий автомобильного и сельскохозяйственного профиля. Москва, 1991.
11. Под ред. к.т.н. Павлова Н.Н. и инж. Шиллера Ю.И., Справочник проектировщика. Внутренние санитарно-технические устройства. Часть 3. Вентиляция и кондиционирование воздуха. Книга 1. Москва, Стройиздат, 1992 г.
12. Под ред. к.т.н. Павлова Н.Н. и инж. Шиллера Ю.И., Справочник проектировщика. Внутренние санитарно-технические устройства. Часть 3. Вентиляция и кондиционирование воздуха. Книга 2. Москва, Стройиздат, 1992 г.