Смекни!
smekni.com

Проектирование систем двигателей внутреннего сгорания (стр. 15 из 18)

Средняя температура воздуха, проходящего через радиатор:

, (6.5 [1])

Температура воздуха на входе в радиатор принимается tвозд.вх = 40 ºС

Необходимая площадь (м2) поверхности охлаждения радиатора:

, (6.6 [1])

где kж – коэффициент теплопередачи от охлаждающей жидкости к охлаждающему телу (Вт/м2 ºС), в результате экспериментальных исследований установлено, что для радиаторов тракторов kж находится в пределах 80...100 Вт/м2 ºС.

Принимаем kж = 90 Вт/м2 ºС

Площадь фронтовой поверхности радиатора (м2):

, (6.8 [1])

где υвозд – скорость воздуха перед фронтом радиатора (6...18 м/с) без учета скорости движения машины, принимаем υвозд = 13 м/с.

Глубина сердцевины радиатора (мм):

, (6.6 [1])

где φр – коэффициент объемной компактности: для современных радиаторов (0,6...1,8 мм-1). Принимаем φр = 1,2 мм-1

8.2. Расчет вентилятора

В системах охлаждения вентиляторы устанавливаются для создания искусственного потока воздуха, проходящего через радиатор, что позволяет уменьшить площадь охлаждающей поверхности, вместимость и массу охлаждающей системы в целом.

Вентилятор выбираем со штампованными из листовой стали лопастями, приклепанными к стальной ступице, четырехлопастной. Для уменьшения вибраций и шума лопасти располагаем Х-образно – попарно под углом 70 º и 110 º. Вентилятор установлен на валу насоса охлаждающей жидкости.

Окружная скорость лопасти вентилятора (м/с) на ее наружном диаметре:

, (6.10 [1])

где ψ – коэффициент, зависящий от формы лопастей, ψ = 2,2...2,9 – для криволинейных лопастей;

Рв – давление воздуха, создаваемое вентилятором (Рв = 600...1000 Па)

ρв = 1,04 кг/м3

Диаметр вентилятора (м):

, (6.11 [1])

где υ'возд – расчетная скорость воздуха в рабочем колесе (13...40 м/с), принимаем υ'возд = 20 м/с.

Значение Dв округляем до ближайшего по ГОСТ 10616-73 и принимаем Dв = 0,400 м.

Частота вращения вентилятора (мин-1):

, (6.12 [1])

Мощность (кВт), потребная для привода вентилятора:

, (6.13 [1])

где ηв – КПД вентилятора, для клепаных вентиляторов ηв = 0,3...0,4. Принимаем 0,35.

8.3. Расчет насоса охлаждающей жидкости

Расчетная подача водяного насоса (л/с):

, (6.14 [1])

где ηн – коэффициент подачи, учитывающий возможность утечки жидкости из напорной полости во всасывающие, (0,8...0,9). Принимаем 0,85.

Радиус r1 (м) входного отверстия крыльчатки насоса:

, (6.15 [1])

где r0 – радиус ступицы крыльчатки (12...30 мм). принимаем 20 мм;

С1 – скорость жидкости на входе в насос (1...2,5 м/с). принимаем 1,75 м/с.

Окружная скорость схода жидкости (м/с):

, (6.16 [1])

Где α2 и β2 – угол между направлениями С2 и U2, W2 и U2 (рис 20).

Рж – давление жидкости, создаваемое насосом, Па: (5...10)·104,

ηг – гидравлический КПД насоса (0,6...0,7).

Для обеспечения ηг = 0,6...0,7 принимаем α2 = 8...12 º, β2 = 32...50 º.

Принимаем: α2 = 9 º, β2 = 42 º, ηг = 0,67, Рж = 8,5·104 Па.

Радиус крыльчатки на выходе:

Окружная скорость потока жидкости на входе (м/с):

, (6.18 [1])

Угол

определяется исходя из того, что угол α1 между векторами скоростей С1 и U1 = 90 º.

, (6.19 [1])

На основании полученных данных производится профилирование лопасти. Как правило, лопасти профилируются по дуге окружности. Для этого проводя внешнюю окружность крыльчатки радиусом r2, а внутреннюю – радиусом r1, в произвольной точке В на внешней окружности строим угол β2. От радиуса ОВ строится угол β1 + β2. Через точки В и К проводится линия ВК, которая продолжается до пересечения с окружностью входа (точка А). Из середины отрезка АВ (точка L) проводится перпендикуляр к линии ВЕ (точка Е), а из точки Е – дуга, являющаяся искомым очертанием лопасти.

Радиальная скорость схода охлаждающей жидкости (м/с):

, (6.20 [1])

Ширина лопастей на входе b1 и на выходе b2 определяется:

, (6.21 [1]);

, (6.22 [1]);

где z – число лопастей на крыльчатке,

δ – толщина лопастей, мм

В существующих конструкциях: z = 4...8; δ = 3...5 мм.

Принимаем: z = 6, δ = 3 мм

Мощность (кВт), потребляемая водяным насосом:

, (6.23 [1])

где ηм – механический КПД насоса (0,7...0,9)

Вместимость систем жидкостного охлаждения тракторных дизелей:


9. РАСЧЕТ СИСТЕМЫ ПУСКА ДВИГАТЕЛЯ

Для пуска двигателя необходимо, чтобы частота вращения его вала обеспечивала условия возникновения и нормальное протекание начальных рабочих циклов в двигателе. Пусковая частота вращения коленчатого вала двигателя зависит от вида двигателя и условий пуска. Момент сопротивления проворачиванию вала двигателя при его пуске зависит от температуры окружающей среды, степени сжатия, частоты вращения, вязкости масла, числа и расположения цилиндров. Мощность пускового устройства определяется моментом сопротивления проворачиванию и пусковой частотой вращения.

Пусковое устройство дизелей состоит из электрического стартера СТ – 212А мощностью 4,8 л.с. Стартер представляет собой электродвигатель постоянного тока последовательного возбуждения. Включение стартера дистанционное, с помощью электромагнитного реле и включателя стартера.

9.1. Расчет пускового устройства

Выбираем марку масла и задаем его расчетную кинематическую вязкость.

В соответствии с требованиями ГОСТ – 20000-82 предельной температурой холодного запуска автотракторных дизелей со штатной пусковой системой считают – 10 ºС при обычных зимних маслах и – 20 ºС при применении загущенных масел.

Масло моторное (см. расчет системы смазывания):

Летнее – М 10 Г2 по ГОСТ 8581-78;

или – М 10 В2 по ГОСТ 8581-78;

Зимнее – М 8 Г2 по ГОСТ 8581-78;

или – М 8 В2 по ГОСТ 8581-78.

Т.к. выбраны масла не загущенные, то предельную температуру холодного запуска систем равной – 10 º С.

По графику (6.1.[1]) для зимнего масла М-8Г2 для t C = -10 ºС находим расчетную его вязкость.