где ηнм – механический КПД насоса (0,85...0,9)
Рн – давление, развиваемое насосом (Рн = 0,7 Мпа – см. описание системы смазывания).
Вместимость системы смазывания:
7.2. Расчет центрифуги
Центрифуга представляет собой центробежный фильтр тонкой очистки масла от механических примесей. Качественная очистка масла возможна лишь в случае, если привод центрифуги будет обеспечивать:
а) высокие угловые скорости ротора (5000...7000 мин-1)
б) частоту вращения ротора, не зависящую от скоростного режима двигателя.
в) простоту конструкции, длительный срок службы.
Центрифуга – полнопоточная, привод гидрореактивный двухсопловый.
Частота вращения ротора центрифуги:
, (6.36 [1])где Vцр – расход масла ч/з сопла центрифуги;
Vцр = 0,2Vц = 0,2·0,214 = 0,0428 м/с
R – расстояние от оси сопла до оси вращения ротора (R = 20 мм);
ε = 1 – коэффициент сжатия струи в отверстии сопла.
Вместимость ротора 0,8 л соответствует а = 0,8 Нмм,
b = 0,52·10-2 Нмм/мин-1
Диаметр сопла dс = 1,5 мм
Площадь сечения отверстия сопла:
Для расчета давления масла на входе в центрифугу выбираем коэффициент расхода μ = 0,84 и коэффициент гидравлических потерь Ψ =0,3.
7.3. Расчет радиатора
Расчет масляного радиатора заключается в определении площади его охлаждающей поверхности.
Q'м – количество теплоты, отдаваемой радиатором должно составлять 50...75 % теплоты Qм, отводимой маслом от двигателя. Циркуляционный расход масла через радиатор: Vрад = Vц = 0,214 л/с.
Температура масла на выходе из радиатора, tрад.вых = 80 ºС.
Средняя температура масла:
Средняя температура охладителя:
,где ∆tохл – температура охладителя на входе в радиатор, для вохдушно-масляных радиаторов (3...5 ºС);
tохл.вх – температура охладителя на входе в радиатор, для воздуха (40 ºС).
Площадь (м2) поверхности радиатора, омываемой охлаждающим телом:
где kж – полный коэффициент теплопередачи от масла к охладительному телу. В результате экспериментальных исследований найдено, что для радиаторов тракторов kж находится в пределах 25...70 Вт/м2 ºС
Толщина стенки радиаторных трубок:
Скорость масла в них – 0,1...0,5 м/с.
7.4. Расчет шатунного подшипника скольжения
Диаметр шатунной шейки: dшш = 68 мм;
Длина подшипника: lш = 38 мм;
Диаметральные зазоры: ∆min = 0,057 мм;
∆max = 0,131 мм;
Радиальные зазоры: δmin = 0,0285 мм;
Рис. 20. Положение вала в подшипнике.
Относительные зазоры:
Минимальная толщина масляного слоя:
где kшш = Rшср/lшdм = 11745/68·38 = 4,55 МПа.
μ – вязкость масла М – 10Г2 при 110 ºС
μ = 0,00657 Нс/м2
Величина критического слоя масла:
Коэффициент запаса надежности подшипников:
Во втором случае подшипник обладает недостаточным запасом надежности и возможен переход на сухое трение.
8. РАСЧЕТ СИСТЕМЫ ОХЛАЖДЕНИЯ
Система охлаждения представляет собой совокупность устройств, обеспечивающих принудительный отвод теплоты от нагретых деталей двигателя и передающих ее окружающей среде с целью поддержания оптимального теплового состояния двигателя.
К системе охлаждения предъявляют следующие требования:
- предупреждение перегрева или переохлаждения двигателя на всех режимах его работы в различных рельефных и климатических условиях работы мобильных машин;
- сравнительно небольшие затраты мощности на охлаждение;
- компактность и малая масса;
- эксплуатационная надежность;
- малая материалоемкость и себестоимость.
Ориентируясь на прототип Д – 244 принимаем: охлаждение дизеля жидкостное с принудительной циркуляцией охлаждающей жидкости от центробежного насоса, объединенного в один агрегат с вентилятором. Валик насоса и вентилятор приводятся во вращение от шкива коленчатого вала дизеля с помощью клинкового ремня. Для регулирования температуры в системе охлаждения установлен термостат ТС – 109 с твердым наполнителем.
8.1. Расчет радиатора
Определяем количество теплоты Qж (кДж/с), отводимой через систему охлаждения двигателя при его работе на режиме номинальной мощности:
, (6.1 [1])где qж = Qж/Q0 – относительная теплоотдача в охлаждающую жидкость, обычно qж для дизелей лежит в пределах 0,16...0,36 от теплоты сгорания топлива, принимаем qж = 0,26:
Расчетное количество теплоты (с учетом изменения коэффициента теплоотдачи из-за засорения наружной поверхности решетки радиатора и отложения накипи внутри).
Количество теплоты, отводимой от двигателя охлаждающей жидкостью (Qжр), принимается равным количеству теплоты, передаваемой охлаждающему воздуху (Qвозд):
Расход воздуха (м3/с), проходящего через радиатор:
(6.2. [1])где Свозд – средняя удельная теплоемкость воздуха, Свозд = 1,005 кДж/кг ºС
Р – плотность воздуха при температуре 40 ºС (Рвозд = 1,13 кг/м3);
∆tвозд – температурный перепад в решетке радиатора (25 ºС):
Циркуляционный расход (л/с) охлаждающей жидкости, проходящей через радиатор:
, (6.3 [1])где Сж – удельная теплоемкость охлаждающей жидкости (для воды 4,187 кДж/кг ºС)
ρж – плотность жидкости (для воды при tж = 20 ºС ρж = 1 т/м3
∆tж – температурный перепад охлаждающей жидкости в радиаторе (∆tж= tжвх – tжвых = 6...12 ºС).
Оптимальное значение температуры tжвх, характеризующей температурный режим жидкостного охлаждения, принимается в интервале 80...95 ºС. Принимаем tжвх = 92 ºС, ∆tж = 10 ºС
.Средняя температура жидкости в радиаторе:
, (6.4 [1])