Смекни!
smekni.com

Техническая характеристика портального крана циклического действия с возвратно–поступательным движением грузозахватного органа (стр. 3 из 4)

f_0^min=f_0/C=0,0014/2,5=0,0057

Сопротивления трения в неприводных колесах:

W_т^нк=W_т-P_пр∙f_0^min=40,069-934,934∙0,0057=34,726 кН

Сила инерции поступательно движущихся масс:

F_и=(m_кр+Q)∙v_пр/t_р =(270+16)∙0,4/3=38,133 кН

Тяговое усилие:

F_т=W_т^нк+F_вI+W_ук+F_и=34,726+20,22+7,343+38,133=100,422 кН


Коэффициент запаса:

K_з=F_сц/F_т =140,24/100,422=1,397>1,1

3.10 Определение тормозного момента и выбор тормоза

Нагрузка ветра на кран:

F_вII=p_II∙УA_н=250∙134,8=33,7 кН

Где,

p_II=250 – распределенная ветровая нагрузка.

Сопротивление трения:

W_т^min=W_т/C=40,069/2,5=16,027 кН

Статический момент при торможении:

М_ст^т=(F_вII+W_ук-W_т^min)/Z_э ∙D_к/2∙1/U_об ∙з=(33,7+7,394-16,027)/4∙0,56/2∙1/49,48∙0,846==40,323 Нм

t_т=3 с – время торможения

Динамический момент при торможении:

М_дин^т=1/t_т ∙[9565∙((m_кр+Q)∙V_п^2∙з)/(Z_э∙n_д )+(1,2∙(〖GD〗_р^2

+〖GD〗_м^2 )∙n_д)/375]

М_дин^т=1/3∙[9565∙((270+16)∙〖0,4〗^2∙0,846)/(4∙675)+(1,2∙(〖10,788〗^2+〖12,553〗^2 )∙675)/375]=62,52 Нм

Тормозной момент:

М_тор=М_ст^т+М_дин^т=40,323+62,52=102,843 Нм

3.11 Выбор предохранительных и вспомогательных устройств

Рельсовый захват наиболее распространенный тип противоугонного устройства портальных кранов. Конструкция рельсового захвата должна допускать закрепление крана на всем пути перемещения. Клещевые захваты имеют ручной или машинный привод. Ручные захваты имеют эксцентриситетовые губки. Винт стягивающий рычаги захватов расположен выше.

Буфера. Служат буфера для смягчения ударов об ограничительные упоры самих кранов и их перемещающихся элементов.

Деревянные буфера (из дуба, бука или клена) применяются только при малых скоростях и грузоподъёмностях.


4. Расчет механизма поворота

4.1 Определение момента сил сопротивления повороту

Максимальный грузовой момент, действующий на кран:

M_гр^max=g∙Q∙L_max=9,81∙16∙32=5021 кНм

Момент от силы тяжести, создаваемый массой поворотной части, относительно нижней опоры колонны:

M_mпч=g∙m_пч∙l_пч=9,81∙220∙1,4=3021 кНм

Где:

l_пч – расстояние от центра тяжести поворотной части до оси вращения, м;

m_пч – масса поворотной части, т (из аналога).

Реакция опоры:

H=(M_гр^max+M_mпч)/h=(5021+3021)/5,85=1375 кН

Где,

h – расстояние между опорами колонны, м.

Суммарная нагрузка на передние колеса:

∑P=H/cosб=1375/cos0,15=1375 кН

Коэффициент сопротивления движению:

f_0=(м∙d/D_к +(2∙k)/D_к )∙c=(0,02∙100/500+(2∙0,6)/500)∙2,5=0,016

Где,

м – коэффициент трения в цапфах колес (м=0,02);

d – диаметр цапфы, мм (d=100 мм, из аналога);

D_к – диаметр колес, мм (D_к=500 мм, из аналога);

k – коэффициент трения качения (k=0,6);

c – коэффициент, учитывающий дополнительные сопротивления в ступицах конических колес (с=2,5, для подшипников скольжения).

Сопротивление трения в верхней опоре

W_m^в=∑P∙f_0=1375∙0,016=21,995 кН

Момент сил трения в верхней опоре

M_m^в=W_m^в∙D_р/2=21,995∙3,7/2=40,69 кНм

Где,

D_р – диаметр кругового рельса, м (из аналога).

Сила тяжести поворотной части крана с грузом и грузозахватным устройством:

V=g∙(m_пч+Q)=9,81∙(220+16)=2314 кН

Момент сил трения в нижней опоре (пяте):

M_m^н=H∙м∙d_ср1/2+V∙м∙d_ср2/2=1375∙0,02∙(0,265 )/2+2314∙0,02

∙0,540/2=16,141 кНм

Где,

d_ср1 – средний диаметр радиального подшипника, м (d_ср1=0,265 м, из аналога);

d_ср2 – средний диаметр упорного подшипника, м (d_ср2=0,540 м из аналога).

Момент сил трения:

M_m=M_m^в+M_m^н=40,69+16,141 =56,831 кНм

Момент от поворотной нагрузки на поворотную часть крана:

M_в1=p_1∙(A_н1∙L_max+A_н2∙r_х+A_н3∙r_c-A_(н4∙) r_мо-A_н5∙r_пр ) 〖∙10〗^(-3)==150∙(14∙32+10,5∙22,6-30∙8,5-39,5∙1,3-4,8∙3,6)∙〖10〗^(-3)==130,751 кНм

Где,

p_1 – распределенная ветровая нагрузка на единицу площади, Па (p_1=150 Па);

L_max – расстояния от центра парусности груза, м (L_max=32 м);

r_х – расстояния от центра парусности хобота, м (r_х=22,6 м);

r_c – расстояния от центра парусности стрелы, м (r_c=8,5 м);

r_мо – расстояния от центра парусности машинного отделения, м (r_c=1,3 м);

r_пр – расстояния от центра парусности противовеса, м (r_пр=3,6 м).

Горизонтальная сила в результате отклонения грузовых канатов от вертикали:

F_б1=g∙Q∙tgб_1=9,81∙16∙0,035=5,479 кН

Где,

б_1 – угол отклонения грузовых канатов от вертикали (б_1=2°).

Момент, вызванный отклонением грузовых канатов от вертикали:


M_б1=F_б1∙L_max=5,479∙32=175,344 кНм

Момент сил сопротивления повороту:

M=M_m+M_в1+M_б1+M_и=56,831+130,751+175,344+0=362,925 кНм

Момент от крена M_и при отклонении оси поворота от вертикали у портальных кранов сравнительно не велик, и им можно пренебречь.

4.2 Определение потребной мощности электродвигателя

КПД механизма:

з=з_р∙з_оп=0,94∙0,95=0,893

Где,

з_р – КПД редуктора (для редуктора Ц2 з_р=0,94);

з_оп – КПД открытой зубчатой передачи (з_оп=0,95).

Среднеквадратичное значение момента от ветровой нагрузки на поворотную часть крана:

M_в1^ск=0,7∙M_в1=0,7∙130,751=91,525 кНм

Потребная мощность электродвигателя:

N=(M_m+M_в1^ск+M_б1+M_и^ск)/(9,55∙з)∙n_кр=((56,831+92,995+175,344+0))/(9,55∙0,893)∙1,55=58,833 кВт

По N_рас и по 〖ПВ〗_к подбираем двигатель серии МТН 612 – 8 с параметрами (по 8, стр. 220):

Скорость вращения ротора: n_д=575 об/мин;

КПД двигателя: з_д=0,902;

Максимальный вращающий момент: M_(д_max)=3200 Нм;

Момент инерции ротора двигателя: I_р=5,2 кг∙м^2;

Масса двигателя: m_дв=1070 кг;

Мощность: N_н=60 кВт;

Кратность среднего пускового момента: л_п=1,6;

С коническими концами валов.

Номинальный момент двигателя:

M_н=9550∙N_н/n_д =9550∙60/575=996,522 Нм

4.3 Проверка двигателя на кратковременную допустимую перегрузку

Горизонтальная сила в результате отклонения грузовых канатов от вертикали:

F_б2=g∙Q∙tgб_2=9,81∙16∙0,105=16,492 кН

Где,

б_2 – угол отклонения грузовых канатов от вертикали (б_1=6°).

Момент, вызванный отклонением грузовых канатов от вертикали:

M_б2=F_б2∙L_max=16,492∙32=527,748 кН

Момент от поворотной нагрузки на поворотную часть крана:


M_в2=p_2∙(A_н1∙L_max+A_н2∙r_х+A_н3∙r_c-A_(н4∙) r_мо-A_н5∙r_пр ) 〖∙10〗^(-3)==250∙(14∙33+10,5∙22,6-30∙8,5-39,5∙1,3-4,8∙3,6)∙〖10〗^(-3)==217,918 кНм

Где,

p_2 – распределенная ветровая нагрузка на единицу площади, Па (p_1=250 Па).

Общее передаточное число механизма:

U_об=n_дв/n_кр =575/1,55=370,968

Максимальный момент сопротивления на валу электродвигателя:

M_сопр^max=(M_m+M_в2+M_б2+M_и)/(U_об∙з)=(56,831+217,918+527,748+0)/(370,968∙0,893)=2,422 кНм

Проверка:

0,8∙M_д^max≥M_сопр^max

0,8∙3200≥2422

2560≥2245

4.4 Выбор редуктора и муфты предельного момента

Выбираем редуктор Ц2 – 750, (по 4, стр. 218) с параметрами:

Передаточное число редуктора: U_р=50;

Межосевое расстояние: a_щ=750 мм.

Передаточное число открытой передачи:


U_оп=U_об/U_р =370,968/50=7,419≈9

Компоновка одноступенчатая, диаметр первой шестерни равен d_ш=500 мм, следовательно, диаметр колеса:

d_к=U_оп∙d_ш=9∙500=4500 мм

Модуль открытой передачи принимаем m_оп=15, следовательно, число зубьев шестерни и колеса равно:

Z_ш=d_ш/m_оп =500/15=33,333

Принимаем Z_ш=34

Z_к=Z_ш∙U_оп=34∙9=306

Принимаем Z_к=306

Расчетная мощность, подводимая к редуктору:

N_расч^ред=N_н∙√(〖ПВ〗_ф/(ПВ_кат^ред ))=60∙√((40%)/(100%))

=37,947 кВт

4.5 Расчет многодисковой муфты предельного момента

Момент, на который рассчитана муфта

M_муф=1,8∙M_ном∙U_м∙з_м=1,8∙996,522∙1∙1=1794 Нм

Где,

U_м – передаточное отношение муфты (U_м=1, т.к. муфта предельного момента вмонтирована в МУВП);

з_м – КПД муфты (з_м=1, т.к. муфта предельного момента вмонтирована в МУВП).

R_1=(1,2∙d_км)/2=(1,2∙140)/2=84 мм

Где, d_км –диаметр кожуха муфты, мм.

R_2=(0,8∙D_к)/2=(0,8∙370)/2=148 мм

Где, D_к –диаметр внутренней полости тормозного шкива МУВП, мм.

Средний радиус, на котором приложена сила трения между дисками

R_ср=(R_1+R_2)/2=(84+148)/2=116 мм

Задаемся материалом трущихся пар – Чугун-Чугун, с параметрами:

Коэффициент трения между дисками: м_тр=0,1;

Число трущихся пар: i_тр=6.

Необходимое усилие, сжимающее диски:

M_муф=F∙м∙i∙R_ср

Откуда:

F=M_муф/(м∙i∙R_ср )=1794/(0,1∙6∙0,116)=25,772 кН

Проверка:

q=F/(р∙(R_2^2-R_1^2))≤[q]

q=25775/(3,14∙(〖148〗^2-〖84〗^2))=0,552≤0,6

Где, [q] – допускаемое удельное давление между тормозной обкладкой и металлическим диском при густой смазке ([q]=0,6 по 4, стр. 276).

4.6 Определение тормозного момента, выбор и расчет тормоза

Тормозной момент:

M_тор=1,5∙М_ном=1,5∙996,522=1494,828 Нм

Выбираем колодочный педальный тормоз на основе ТКГ – 400, диаметр шкива 400 мм, с параметрами.

5. Расчет устойчивости крана

5.1 Определение грузовой устойчивости крана

Сила инерции:

F_и1=Q∙V_п/t_(т_кр) =16∙1,4/1,25=17,92 кН

Где, t_(т_кр) – время торможения крана, с.

Момент инерции груза:

M_и1=F_и1∙(L_max-0,5∙L_кол )=17,92∙(32-0,5∙10,5)=479,36 кНм

Момент инерции поворотной части крана:

Вес стрелы:

G_ст=g∙m_ст=9,81∙16,4=160,835 кН

Где, m_ст – масса стрелы, т (m_ст=16,4).

Сила инерции поворотной части:

F_и2=G_ст∙V_п/(3∙t_(т_кр) )=160,835∙1/(3∙1,25)=60,045 кН

Момент инерции груза:

M_и2=F_и2∙(L_max-0,5∙L_кол )=60,045∙(32-0,5∙10,5)=1606 кНм

Момент от сил инерции портала:

F_и3=V∙V_кр/t_(т_кр) =16∙0,4/1,25=897,5 кН

Момент от сил инерции портала:

M_и3=F_и3∙h=5251 кНм

Момент инерции центробежной силы:

F_иц=(g∙Q∙n_кр^2∙L_max)/(900-n_кр^2∙H_п )=(9,81∙16∙〖1,55〗^2∙32)/

(900-〖1,55〗^2∙40)=15,006 кН

Момент от центробежной силы:

M_иц=F_цс∙h_бл=15,006 ∙25=375,152 кНм

Где, h_бл – высота концевого блока стрелы, м.

Ветровая нагрузка на груз:

F_(в_гр)=(p_2∙A_н1)/1000=3,5 кН

Ветровой момент:

M_в=F_(в_кр)∙h_кр+F_(в_гр)∙h_г=33,7 ∙18+3,5∙22=683,6 кНм

Где,

h_кр – высота центра тяжести крана, м (h_кр=18 м);

h_г – высота центра тяжести груза, м (h_г=22 м).

Момент от силы тяжести крана:

M_g=g∙m_кр∙[(0,5∙L_кол+l_0 )∙cosб_у-h_0∙sinб_у ]==9,81∙270 ∙[(32-0,5∙10,5)∙1-0,026]=16480 кНм


Момент от силы тяжести груза:

M_Q=g∙Q∙(L_max-0,5∙L_кол )=9,81∙18 ∙(32-0,5∙10,5)=4188 кНм

Коэффициент грузовой устойчивости: