К оснащению диагностического участка предъявляются следующие требования:
• инструментарий диагноста должен содержать основные и вспомогательные средства измерения, программное и информационное обеспечение, достаточное для решения текущих задач участка;
• комплект оборудования должен быть построен по модульному принципу, что позволит наращивать мощности участка и расширять деятельность СТОА;
• оборудование должно продолжительное время сохранять свою актуальность и эффективность несмотря на изменения в конструкции автомобилей, методик их обслуживания и ремонта;
• оборудование участка должно быть согласовано по техническим характеристикам;
• оборудование участка должно обеспечивать разумный срок его окупаемости.
Список необходимого оборудования включает стенд бокового увода (люфт-детектор), стенд проверки амортизаторов и шумов подвески, стенд для проверки тормозов, инспекционный подъемник, аппаратуру для обнаружения люфтов, индивидуальный сетевой компьютер и др.
Полная компьютерная диагностика проводится на стационарных проездных комплексах блочной конфигурации, имеющих возможность расширения функций.
Типовой стационарный проездной диагностический комплекс должен состоять из следующих модулей: тестер (детектор) увода автомобиля от направления прямолинейного движения; амортизационный стенд; тормозной стенд; детекторный стенд; анализатор света фар; осмотровая яма; дымомер; газоанализатор; тестер тормозной жидкости; тестер охлаждающей жидкости и аккумулятора (рис. 3.1). Стенды необходимо оснастить персональным компьютером (диагностический центр) с программным продуктом, управляющим работой компонентов стенда в автоматическом, полуавтоматическом и ручном режимах. Компьютерная программа стенда должна обеспечивать поточный контроль автомобилей и вывод диагностической карты установленного образца. Модульный принцип позволяет укомплектовывать оборудование исходя из индивидуальных требований заказчика. При этом в технологическую линию легко интегрируются требуемые дополнительные стенды и приборы.
Рис. 3.1. Схема типового стационарного проездного диагностического комплекса: / — тестер (детектор) увода автомобиля от направления прямолинейного движения; 2 — дисплей вывода результатов проверок систем автомобиля в графическом виде; 3 — тестер охлаждающей жидкости и аккумулятора; 4 — тестер тормозной жидкости; 5 — диагностический центр; 6 — газоанализатор; 7 — дымо-мер; 8 — осмотровая яма; 9 — анализатор света фар; 10 — люфт-детекторный стенд; 11 — тормозной стенд; 12 — амортизационный стенд
4. Стенды для экспресс-диагностики ходовой части автомобиля
Рис. 3.3. Модули платформенного стенда динамической проверки автомобилей: а — с одним тормозным модулем; б — с двумя тормозными модулями
Необходимость точной и объективной инструментальной диагностики ходовой части автомобиля (рис. 3.2) понятна всем. Надежные тормоза, синхронное срабатывание амортизаторов, отсутствие чрезмерного износа шин часто спасают не только автомобиль, но и жизнь его владельца. Тем не менее очень немногие автосервисы обладают необходимыми стендами или линиями инструментального контроля ходовой части. Причина этого банальна — такое оборудование очень дорого, сложно в установке, занимает площадь, которой всегда не хватает на СТОА и отнимает время клиента. Выходом из этой ситуации являются платформенные стенды динамической проверки автомобилей. Платформенный стенд динамической проверки автомобилей состоит из платформ тормозного модуля и модуля измерения схождения колес (рис. 3.3).
Принцип платформенного стенда прост: диагностика ходовой части проводится «на ходу», в динамике, т. е. когда автомобиль «движется по дороге», когда на него действует не только сила тяжести, но и сила инерции, перераспределяющая нагрузки на переднюю или заднюю ось, на правый или левый амортизатор. Современный платформенный стенд диагностики ходовой части представляет собой две полосы плоских металлических платформ, уложенных на уровне пола, соединенных между собой кабелями и оснащенных дисплеем и компьютером. Толщина платформ составляет 40 мм, вместо приводов или других силовых установок используются тензометрические датчики. Дисплей и коммутационный блок крепятся на стене или потолочном перекрытии, а компьютер устанавливается в любом удобном для мастера месте.
Приняв автомобиль клиента, мастер приемки проезжает по стенду, тормозит на нем и проезжает к месту обслуживания. В течение 30 с компьютер обрабатывает полученные от тензо-метрических датчиков сигналы и выдает мастеру распечатку результатов диагностики.
В основу работы тормозных модулей положен принцип прямого измерения тормозной силы с помощью силоизмерительных датчиков, установленных под рельефными платформами. Датчики измеряют приложенную к поверхности платформы силу, возникающую при торможении испытуемого автомобиля. Тормозные усилия сканируются датчиками в течение всего времени торможения и обрабатываются компьютером, при этом значение максимальной тормозной силы в ньютонах высвечивается на дисплее стенда. Все текущие значения тормозной силы с интервалом в 0,15 с выдаются на принтер и показываются на распечатке. Если в память компьютера ввести вес автомобиля и нормы схождения колес, то программа рассчитает эффективность и устойчивость торможения, сравнит их с нормами ГОСТ (они заложены в компьютерную программу стенда) и на распечатке выдаст не только их значение, но даст заключение о соответствии полученных данных требованиям ГОСТ.
Динамический метод измерений позволяет легко определять тормозные усилия даже на автомобилях с полным постоянным приводом колес.
Величина схождения колес на каждой оси автомобиля определяется при проезде испытуемого автомобиля по платформам модуля измерения схождения колес. Модуль состоит из двух установленных параллельно платформ — подвижной и неподвижной. Поперечное отклонение подвижной платформы под действием силы, вызванной наличием угла схождения, измеряется встроенным датчиком и обрабатывается компьютером. Величина суммарного схождения колес на данной оси (в мм) высвечивается на дисплее и отображается в распечатке.
Информация о динамических колебаниях автомобиля после его остановки на платформах тормозного модуля распечатывается на принтере в виде графиков и позволяет оценить эффективность работы подвески испытуемого автомобиля. Максимальные значения амплитуд колебаний выдаются в относительных единицах.
Если остальные детали подвески (рычаги, рессоры, опоры и т. д.) исправны, то полученные данные напрямую соответствуют состоянию амортизаторов.
5. Стенды диагностики бокового увода колес
Увод автомобиля от направления прямолинейного движения зависит от величины углов установки управляемых колес (схождение и развал). Правильная установка колес (УКК) — залог хорошей управляемости автомобиля, снижение нагрузки, а следовательно, и меньший износ, в узлах подвески и рулевого управления, уменьшение износа протектора шин.
Причинами неоптимальной величины УКК являются: неправильные углы установки колес, износ деталей подвески, изменением геометрической формы кузова или рамы автомобиля.
Оборудование для контроля углов УКК можно подразделить на две группы: оборудование для экспресс-диагностики (выявляются дефекты, требующие проведение дополнительных работ) и оборудование для углубленного контроля и регулирования УКК.
К первой группе оборудования относятся площадочные стенды (детекторы увода), входящие в состав проходного диагностического комплекса.
Стенд (детекторы увода) представляет собой подвижную горизонтальную измерительную площадку 2 (рис. 3.4) размером 500 х 390 мм, с платформой / и указательной колонкой (светофором) 3. Платформа устанавливается на опорной балке, утопленной в нише пола. Измерительная площадка размещена на катках и имеет возможность перемещаться в горизонтальном направлении перпендикулярно перемещению автомобиля (направление перемещения автомобиля указывается стрелкой на измерительной площадке). Измерительная платформа устанавливается по ходу движения автомобиля таким образом, чтобы на нее опиралось только одно колесо.
При нарушении УКК на платформу во время движения автомобиля воздействует боковая сила, по величине которой микропроцессор вычисляет углы движения передних и задних колес (точность измерения — увод в 1 м на пути 1 км). Светофор оснащен четырьмя индикаторами белого, зеленого, желтого и красного цвета. Белый цвет — воздействие на измерительную площадку отсутствует; зеленый — УКК в норме; желтый — углы УКК близки к норме; красный — нарушена установка колес.
6. Стенды проверки амортизаторов
Важнейшими элементами подвесок автомобиля являются амортизаторы. Они препятствуют развитию колебаний автомобиля, возникающих при наезде колес на неровности дороги. При неисправных амортизаторах нарушается требуемый контакт колеса с дорогой, что влияет на безопасность движения.
Точная оценка работоспособности амортизаторов производится с помощью специальных приборов и стендов.
Прибор с датчиком перемещения. Этот прибор состоит из блока, в котором размещены ультразвуковой датчик, вычислительное устройство, управляющие клавиши, дисплей, печатающее устройство и источник ультразвука. Блок закрепляется на крыле автомобиля с помощью присосок, а источник ультразвука кладется на пол рядом с колесом. В память устройства предварительно вводят опорные данные — это результаты измерений, полученные на аналогичном автомобиле с заведомо исправными амортизаторами. Как правило, базы опорных данных поставляются производителем в комплекте с оборудованием. Крыло с закрепленным блоком однократно толкают вниз. Прибор регистрирует колебания и вычисляет коэффициент — число, характеризующее затухание колебаний. Чем быстрее затухают колебания, тем больше значение коэффициента их затухания: 100...65 % — затухание колебаний достаточное; 64...60 % — затухание умеренное; 59...0 % — затухание недостаточное.