Смекни!
smekni.com

Проектирование рабочего оборудования одноковшового экскаватора (стр. 6 из 10)

По найденному усилию P1-1, действующему на зубья ковша (режущую кромку ковша), и сумме моментов относительно точки А (пяты стрелы) определяют реактивное усилие в гидроцилиндрах стрелы по формуле:

РЦС =

Реактивное усилие в цилиндрах стрелы PЦС для положений 1Р определим по формуле:

PЦС1= (1 / 0.54) · (47 · 8.04 + 14.35 · ∙2.1 + 7.65 · 3.48 + 11 · 3.66 – -9.76· 3.03) = 824.6 кН,


По результатам расчета активных и реактивных усилий для рассматриваемых положений находим наиболее неблагоприятное расчетное положение. Этому положению соответствует крайнее нижнее положение стрелы 1Р. При копании поворотом ковша. Определим усилие для положений 6Р, 3Р и 1Р, действующее в тяге ковша (относительно шарнира крепления ковша и рукояти) Т, кН:

Т6 =

= (1 / 0.234) · (49.76 · 1.2 + 11 · 0.049) =257.5 кН,

где r1 = 0.049 м - плечо силы тяжести ковша с грунтом относительно точки C1; rРк = 1.2 м – плечо силы РК.

Т3=

= (1 / 0.34) · (49.76 · 1.2 - 11 · 0.565) =157.3 кН,

где r1 = 0.565 м - плечо силы тяжести ковша с грунтом относительно точки C1;

Т1 =

= (1 / 0.268) · (49.76 · 1.2 - 11 · 0.24) =212.9 кН,

где r1 = 0.24 м - плечо силы тяжести ковша с грунтом относительно точки C1;

Определим усилие в цилиндре ковша для положений 6Р, 3Р и 1Р:

PЦК6 = TrТ2/r2 = 257.5 · 0.435 / 0.24 = 466.7 кН,

где r2 = 0.24 м - плечо силы РЦК относительно точки D; rТ2 = 0.435 м - плечо усилия в тяге Т относительно точки D.


PЦК3 = TrТ2/r2 = 157.3 · 0.43 / 0.38 = 177.9 кН,

где r2 = 0.38 м - плечо силы РЦК относительно точки D; rТ2 = 0.43 м - плечо усилия в тяге Т относительно точки D.

PЦК1 = TrТ2/r2 = 212.9 · 0.3 / 0.22 = 290.3 кН,

где r2 = 0.22 м - плечо силы РЦК относительно точки D; rТ2 = 0.3 м - плечо усилия в тяге Т относительно точки D.

2.6 Расчет на прочность гидроцилиндров

Расчет гильзы выполняется на три вида напряжений, возникающих от давления жидкости.

Определим касательное напряжение, действующее в окружном направлении, мПа:

Для гидроцилиндра стрелы:

σt= 1,1[p](D+δ)/2δ = 1.1 · 32 · (0.14 + 0.021) / 2· 0.021 = 134.93 мПа,

где 1,1[p] – наибольшее (пиковое) давление; [p] = 32 мПа - давление настройки предохранительного клапана; D = 0.14 м – диаметр гидроцилиндра стрелы; δ = 0.015 м - толщина стенки, определяется по таб.5 .

Для гидроцилиндра рукояти:

σt= 1,1[p](D+δ)/2δ = 1.1 · 32 · (0.14 + 0.021) / 2· 0.021 = 134.93 мПа,

где 1,1[p] – наибольшее (пиковое) давление; [p] = 32 мПа - давление настройки предохранительного клапана; D = 0.14 м – диаметр гидроцилиндра рукояти;

δ = 0.021 м – толщина стенки, определяется по таб.5 .

σt= 1,1[p](D+δ)/2δ = 1.1 · 32 · (0.14 + 0.021) / 2· 0.021 = 134.93 мПа,

где 1,1[p] – наибольшее (пиковое) давление; [p] = 32 мПа - давление настройки предохранительного клапана; D = 0.14 м – диаметр гидроцилиндра рукояти;

δ = 0.021 м – толщина стенки, определяется по таб.5 .

Таблица 5.

Давление[p], МПа 10 16 25 32
Толщина δ, мм 0,07D 0,1D 0,12D 0,15D

Определим напряжение в осевом направлении, мПа:

Для гидроцилиндра стрелы:

σ0= 1,1[p]D2 / 4(D+δ)δ = 1.1 · 32 · 0.142 / 4 · (0.14 + 0.021) · 0.021 =51МПа

Для гидроцилиндра рукояти:

σ0= 1,1[p]D2 / 4(D+δ)δ = 1.1 · 32 · 0.142 / 4 · (0.14 + 0.021) · 0.021 =51МПа

Для гидроцилиндра ковша:

σ0= 1,1[p]D2 / 4(D+δ)δ = 1.1 · 32 · 0.142 / 4 · (0.14 + 0.021) · 0.021 =51МПа

Радиальными напряжениями ввиду их незначительности можно пренебречь.

Определим эквивалентные напряжения, МПа:


σэкв = (σt2 + σo2 - σtσo)1/2 ≤ [σ] = σT/ n

σэкв = (σt2 + σo2 - σtσo)1/2 = (134.92 +512 - 134.9 · 51)1/2 = 118 МПа 3.93

118 ≤ [σ]= 250 / 1.8 = 138.8 МПа

Расчет штока выполняется для худшего случая работы штока – сжатие при полном его выдвижении.

В этом случае напряжения сжатия равны, МПа:

Для штока стрелы:

σсж= РЦ / Sшφ ≤ [σсж] = РЦ / Sшφ = 0.412 / 0.0063 · 0.95 = 68.8 ≤ [σсж] =300 / 1.8 = 166.7 МПа

Для штока рукояти:

σсж= РЦ / Sшφ ≤ [σсж] = РЦ / Sшφ = 0.473 / 0.0063 · 0.89 = 84.3 ≤ [σсж] = 300 / 1.8 = 166.7 МПа

Для штока ковша:

σсж= РЦ / Sшφ ≤ [σсж] = РЦ / Sшφ = 0.466 / 0.0063 · 0.89 = 90.2 ≤ [σсж] = 300 / 1.8 = 166.7 МПа

где РЦ – усилие на штоке, Н; SШ – площадь штока, м2; φ – коэффициент, зависящий от гибкости штока λ и его свободной длины lш

Определим длину штока, м:

lш=L+(A-D),

Для штока стрелы:


lш=L+(A-D) = 1.12 + (0.58 – 0.14) = 1.56 м

Для штока рукояти:

lш=L+(A-D) = 0.9 + (0.58 – 0.14) = 1.34 м

Для штока ковша:

lш=L+(A-D) = 0.63 + (0.58 – 0.14) = 1.07 м

где L – ход штока, м;

А – конструктивный параметр гидроцилиндра, м;

D – диаметр цилиндра, м.

2.7 Параметры насосно–силовой установки. Выбор типоразмеров насосов и первичного двигателя

Определим типоразмер насосов по наиболее энергоемкой операции копания, продолжительность которой определим приближенно, в соответствий с рекомендациями, по эмпирической зависимости:

где q = 0.4 м3, вместимость основного ковша.

Приведенная к насосу регуляторная мощность определится как:


где АΣ = 146 кДж, kИ = 0.85 – коэффициент использования мощности насосной установки; ηΣ = 0.54 … 0.66.

Определим номинальную подачу, при РН ном = 20 МПа:

По этой подаче выберем насос серии 223.5 (двухпоточный аксиально– поршневой насос).

Определим требуемую частоту вращения вала, об / мин:

η НОМ = η НОМ ТАБЛ · QНОМ / QНОМ табл = 1400 ·198 / 290.6 =

=953 об / мин

Типоразмер выполнен правильно, так как η НОМ < η НОМ , где η МАХ = 2700 об / мин

Определим требуемую мощность двигателя внутреннего сгорания:

NE = NРЕГ · kСН / η РЕД · kВЫХ = 66 ·1.1 / (0.97·0.9) =83 кВт,

где kСН = 1.1 …1.15 - коэффициент учитывающий потребление мощности на собственные нужды (обогрев кабины, кондиционирование воздуха, электроосвещение); η РЕД = 0.97 – КПД редуктора; kВЫХ = 0.9 – коэффициент снижения выходной мощности двигателя вследствие колебания нагрузки.

По мощности определим тип двигателя внутреннего сгорания серии СМД - 14

Определим передаточное число редуктора:


U = nДВ / nН = 1400 / 953= 1.9

2.8 Расчет металлоконструкции рукояти

Определим наиболее нагруженное положение рукояти.

В положении 3Р будет максимальное плечо гидроцилиндра рукояти относительно шарнира В (стрела и рукоять). Из этого следует, что в этом положении будет развиваться наибольшее усилие копания, а со стороны ковша на рукоять будут действовать максимальные силы на шарниры рукояти.

Определим усилие для положений 3Р, действующее в тяге ковша (относительно шарнира крепления ковша и рукояти) Т, кН:

Т3=

= (1 / 0.34) · (67.4 · 1.2 + 11 · 0.56) = 219.7 кН

Определим усилие в цилиндре ковша для положений 3Р:

PЦК3 = TrТ2/r2 = 219.7· 0.43 / 0.38 = 248.6 кН

Зная значения максимального усилия копания ковша, усилия в тяге ковша, усилия гидроцилиндра ковша, методом плана сил определим силы, которые действуют в шарнирах рукояти. Все построения для определения сил, выполним в масштабе. Чтобы определить силы возникающие в шарнирах рукояти, рассмотрим каждое звено (ковш, тягу, коромысло, рукоять) в отдельности.

Рассмотрим звено ковша.

Зная направление и значение силы действующей на ковш от тяги, а так же направление и силу действующее на ковш при копании, методом плана сил определим значение и направление силы, которая возникает в шарнире ковша РКОВ:

Рис. 14. Схема распределений усилий в ковше.

Рис. 15. План сил возникающих в ковше.

Воспользовавшись методом плана сил, мы определили значение и направление силы РКОВ = 230.73 кН. Рассмотрим звено коромысла. Зная направление и значение силы действующей в тяги, а так же направление и силу действующее на коромысло от гидроцилиндра ковша, методом плана сил определим значение и направление силы, которая возникает в шарнире коромысла РКОР:

Рис. 16. Схема распределений усилий в коромысле.


Рис. 17. План сил возникающих в коромысле.

Воспользовавшись методом плана сил, мы определили значение и направление силы РКОР = 77.18 кН. Рассмотрим звено рукояти. Зная направление и значение сил действующих в ковше, коромысле, гидроцилиндров рукояти и ковша, методом плана сил определим значение и направление силы, которая возникает в шарнире рукояти РСТЕЛЫ = 555.1 кН

Рис. 18. План сил определения усилия возникающего в шарнире рукояти и стрелы.

Выполним проверку:

ΣFx = 0;

ΣFy = 0;