Смекни!
smekni.com

Проект централізованого технічного обслуговування маршрутних транспортних засобів на базі філії "ТЕМП-АВТО" відкритого акціонерного товариства "РІВНЕ-АВТО" (стр. 9 из 19)

Як відомо, в якості головного параметру різьбозгвинчуємого обладнання безударної дії приймається крутний момент згвинчування на шпинделі. Однак при розрахунку робочих органів ударної дії цього параметру недостатньо для обгрунтування їх техніко-експлуатаційних показників. Виникає потреба в додатковому параметрі, який би дозволив оцінювати енергетичний баланс робочих органів по пружним і дисипативним характеристикам складових елементів в умовах динамічного навантаження. Таким параметром являється енергія одиничного удару. Він легко вимірюється в виробничих умовах, а його складова – ударна потужність (приведення енергії удару на число ударів за одиницю часу) дозволяє виконувати об’єктивну оцінку продуктивності розглядуваних робочих органів.

На одному з листів показана одна з конструкцій пневматичних гайковертів з ударно-імпульсною муфтою. Від пневматичного ротаційного двигуна 1 обертання передається ударно-імпульсній муфті 2 і шпинделю 3 з закріпленою на його кінці головкою 4, що тримає гайку чи гвинт. В процесі вільного нагвинчування гайки (або вкручування гвинта) необхідний обертальний момент невеликий, не перевищує момент тертя в муфті, і тому швидкості обертання ротора і шпинделя однакові. На початку затягування момент опору швидко зростає, і шпиндель інструмента зупиняється. Однак шліцева втулка 5, яка обертається з тою ж швидкістю, що і ротор двигуна, своїм скосом повертає кулачок 6 і виводить його з зачеплення з шпинделем 3. При наступному обертанні з наростаючою швидкістю механізм ударно-імпульсної муфти забезпечує зчеплення кулачка 6 з виступом на шпинделі, що супроводжується ударом, внаслідок чого момент на головці 4 різко зростає, і гайка (гвинт) повертається на деякий кут. Після цього кулачок знову виходить із зачеплення, і цикл багаторазово (на протязі) повторюється з великою частотою до повного затягування різьбового з'єднання. Таким чином, безперервне обертання ротора двигуна перетворюється з допомогою муфти в процесі затягування в імпульсний крутний момент на шпинделі. Цей крутний момент затягування різьбового з'єднання значно перевищує по своїй величині момент створений двигуном. Як показують дослідження, при збільшенні жорсткості системи, зменшенні зазорів в зєднанні хвостовика з головкою-ключем, а також головки з гайкою момент затягування збільшується на 50–70%.

2.4 Визначення головного параметру різьбозгвинчуючого обладнання

Головним параметром різьбозгвинчуючого обладнання являється крутний момент згвинчування на шпинделі Мш (крутний момент відгвинчування Мот при розбиранні різьбових з’єднань і крутний момент затягування Мзат при збиранні різьбових з’єднань).

Параметр Мот у об'єктів, що ремонтуються, визначається експериментальним шляхом. В залежності від діаметру різьби, матеріалу і інших факторів він в 1,2…2,5 рази перевищує параметр Мзат при збиранні на заводі аналогічних нових різьбових з’єднань [1].

У нещодавно зібраних різьбових з’єднань завжди Мот< Мзат.

Розрахункове значення Мзат для болтових і гвинтових з’єднань визначається по формулі Біргера-Іосилевича:


,

де Q – сила затягування; d – середній діаметр різьби; h – крок різьби; R1 и R2 – радіуси, описуючі кільцеву опорну поверхню тертя гайки або головки гвинта; мр і мт – коефіцієнти тертя в різьбі і на опорному торці відповідно.

Для звичайних силових метричних різьб з кутом профілю 60° попередня формула значно спрощується:

.

Якщо елементи різьбових з’єднань виконані з одного матеріалу, то приймають: мр=1,15 мт.

Значення Мзат для стальних болтів і гайок при відсутності мащення визначається по формулі:

Мзат

0,2Qdн,

де dн – зовнішній діаметр різьби.

Для гвинтів з циліндричною, сферичною або шестигранною головкою величина моменту затягування може визначатися по співвідношенню:

Мзат=0,005 dн3уT(6,5м+1),

де dн – зовнішній діаметр різьби; уT – границя текучості матеріалу гвинта;

м – коефіцієнт тертя головки гвинта по опорній поверхні.

При визначенні Мзат для гвинтів з потайною головкою в попередній залежності замість числового коефіцієнту 6,5 приймають 9,8 [1].

Середні значення Мот у поступивших в ремонт об’єктів і Мзат при збиранні відремонтованих і нових об’єктів, характерні для болтових з’єднань, приведені в табл. 2.1.

Таблиця 2.1. Середні значення моментів відгвинчування для різних діаметрів різьби

Діаметр різьби, мм 6 8 10 12 14
Момент відгвинчування (затягування), Нм 15…20 (6…8) 20…40 (14…17) 40…80 (30…35) 60…120 (55…65) 100…150(80…90)
Діаметр різьби, мм 16 18 20 24 27
Момент відгвинчування (затягування), Нм 150…200(120–150) 180…300(160–190) 200…350(230–270) 300…450(340–360) 350…500(420–480)

Параметр Мзат при посадці шпильок з натягом визначається по формулі М.П. Новікова (для метричної різьби):

Мзат =

,

де Д – ефективний (радільний) натяг по середньому діаметру різьби; мр – коефіцієнт тертя в різьбі;

– глибина загвинчування шпильки; dн – зовнішній діаметр різьби; Е1 і Е2 – модулі пружності 1-го і 2-го роду.

При загвинчуванні стальних шпильок із середнім діаметром різьби 10…30 мм в стальну деталь Д = 0,02…0,06, в чавунну або алюмінієву деталі – 0,04…0,12 мм [1].

Коефіцієнт мр при використанні стальної шпильки приймається рівним 0,1… 0,2 для стальної деталі; 0,07…0,15 – для чавунної; 0,04…0,1 – для алюмінієвої або бронзової [1].

Значення модулів пружності: для стали Е1= 2,1·105; Е2= =8,1·104 МПа; для алюмінію – Е1= 0,7·105; Е2 = 2,7·104 МПа; для бронзи і латуні Е1 = 0,8·105; Е2 = 4,2·104 МПа [1].

Сила затягування Q знаходиться в залежності від схеми навантаження різьбових з’єднань, міцності болта (шпильки, гвинта) і умови нерозкриття стику:

Q=кР (1-а),

де к – коефіцієнт збільшення зовнішнього навантаження (для постійного навантаження к = 1,25…2; для перемінного – к =2,5…4,0; при необхідності забезпечення герметичності з’єднання з плоскими металічними прокладками к = 2,5… 3,5; те ж з м'якими прокладками – к = 1,25…2,5); Р – зовнішнє навантаження; а = 0,2…0,4 – коефіцієнт основного навантаження, враховуючий податливість різьбових елементів при затягуванні [1].

Слід відмітити, що до нашого часу відсутні надійні методи прямого контролю зусиль затягування в виробничих умовах. Його фактичну величину оцінюють лише по деяким показникам – крутному моменту затягування; куті повороту гайки; видовженню болта і ін.

Досить складною технологічною проблемою являється затягування групових різьбових з’єднань (безпрокладочних і особливо прокладочних). При складанні відповідальних з’єднань важко забезпечити рівномірне затягування в кожному болті (шпильці). В зв’язку з цим проходить нерівномірний розподіл тиску по поверхні стику вузла, що складається, з послабленням раніше затянутих болтів, що приводить до зниження надійності вузла.

На практиці затягування групових різьбових з’єднань проводять в два (рідше в три-чотири) етапи. На першому етапі виконують одночасне затягування всіх болтів (шпильок) з допомогою багатошпиндельної установки на зусилля Q1=(0,3…0,6) Q, що забезпечує контактування стиків (Q – задана сила затягування). На другому етапі завершують затягування шляхом послідовного індивідуального догвинчування гайок (шпильок) до заданого крутного моменту Мзат по оптимальних схемах, наведених на рис. 2.5.

Рис. 2.5. Послідовність затягування гайок (шпильок) в складальних одиницях: а – при стиках прямокутної форми; б – при стиках круглої форми (цифри означають почерговість індивідуальних затягувань)

2.5 Аналіз робочого процесу і параметри безударного різьбозгвинчуючого обладнання

Розглянемо метод визначення моменту затягування болтового з’єднання, який створюється робочим органом прямого приводу. Цей метод розробили проф. В.С. Корсаков і В.І. Чаннов.

Будь-яке РЗ має свою індивідуальну характеристику, обумовлену його сумарною податливістю і силами тертя в різьбовій парі і по торцю гайки. Такою характеристикою являється коефіцієнт кутової жорсткості РЗ: Кр=ДМ/Дц.

Цей коефіцієнт показує, на яку величину змінюється крутний момент, який прикладається до гайки, при повороті її на кут Дц.

Кут повороту гайки являється кутом гальмування шпинделя. Чим меньший кут гальмування (тобто більше значення Кр), тим значиміша складова моменту затягування, що створюється кінетичною енергією обертових мас приводу.

Друга складова моменту затягування залежить від статичного крутного моменту, який створюється пневмодвигуном. Ця с складова не являється постійною величиною. Її максимальне значенння Мст досягається при зупинці шпинделя (числова величина приводиться в технічній характеристиці двигуна).