Кинематический анализ ПКП основан на использовании уравнений кинематики ТДМ.
Рассмотрим схему ПКП (рис. 3) и проанализируем ее работу на всех передачах.
Для этого запишем уравнения кинематики для всех ТДМ, входящих в схему ПКП, в порядке их расположения на схеме:
Первая передача. Она обеспечивается включением тормоза Т1. Здесь под нагрузкой работают планетарные ряды 7, 11 и 14.
Перепишем уравнения кинематики ТДМ для указанных планетарных рядов:
При включении тормоза Т1 на данной передаче (см. рис. 3) nв7= nв11=0; nа7=nвщ; nа11= nа14=nвм.
Решая уравнения кинематики с учетом уравнений связи, определим передаточное число ПКП:
Из схемы ПКП следует, что:
Из уравнения кинематики для планетарного ряда 7, 14 и 18 с учетом уравнений связи определим
Из уравнения кинематики для планетарного ряда 11, 14 и 18 с учетом уравнений связи определим
Из уравнения кинематики для планетарного ряда 18 с учетом уравнений связи определим
Определим относительные частоты вращения всех сателлитов ПКП при включенной первой передаче. Для этого используем выражение [1,2.11]. В результате получим:
Для оценки возможности использования заданной схемы ПКП необходимо оценить абсолютные частоты вращения всех ее звеньев. Поэтому в табл. 5 заносим результаты выполненных расчетов по абсолютной величине (без учета знаков).
Вторая передача. Обеспечивается включением тормоза Т2 и здесь под нагрузкой работают планетарные ряды 7, 11 и 14.
Передаточное число было определено ранее и его величина
Частоты вращения центральных звеньев ПКП и относительных частот вращения сателлитов на второй передаче определяем аналогично.
Перепишем уравнения кинематики ТДМ для указанных планетарных рядов:
При включении тормоза Т2 на данной передаче (см. рис. 3) nв7= nв11; nа7=nвщ; nа11= nа14=nвм; nс14= nс7= nв18; nв14= nс11= nс18=0.
Из схемы ПКП следует, что:
Из уравнения кинематики для планетарного ряда 7, 14 и 18 с учетом уравнений связи определим
Из уравнения кинематики для планетарного ряда 11 и 7 с учетом уравнений связи определим
Из уравнения кинематики для планетарного ряда 18 с учетом уравнений связи определим
Определим относительные частоты вращения всех сателлитов ПКП при включенной первой передаче. Для этого используем выражение [1,2.11]. В результате получим:
Третья передача. Она обеспечивается включением тормоза Т3. Здесь под нагрузкой работают планетарные ряды 7, 11 и 14.
Перепишем уравнения кинематики ТДМ для указанных планетарных рядов:
При включении тормоза Т3 на данной передаче (см. рис. 3) nв7= nв11; nа7=nвщ; nа11= nа14=nвм; nс14= nс7= nв18=0; nв14= nс11= nс18.
Решая уравнения кинематики с учетом уравнений связи, определим передаточное число ПКП:
Из схемы ПКП следует, что
Из уравнения кинематики для планетарного ряда 11,14 и 18 с учетом уравнений связи определим
Из уравнения кинематики для планетарного ряда 11 и 7 с учетом уравнений связи определим
Из уравнения кинематики для планетарного ряда 18 с учетом уравнений связи определим
Определим относительные частоты вращения всех сателлитов ПКП при включенной первой передаче. Для этого используем выражение [1,2.11]. В результате получим:
Четвертая передача. Она обеспечивается включением тормоза Т4. Здесь под нагрузкой работают планетарные ряды 7, 11, 14 и 18.
При включении тормоза Т4 на данной передаче (см. рис. 3) nв7= nв11; nа7=nвщ; nа11= nа14=nвм; nс14= nс7= nв18; nв14= nс11= nс18; nа18=0.
Решая уравнения кинематики с учетом уравнений связи, определим передаточное число ПКП:
Из схемы ПКП следует, что
Из уравнения кинематики для планетарного ряда 7,14 и 18 с учетом уравнений связи определим
Из уравнения кинематики для планетарного ряда 11,14 и 18 с учетом уравнений связи определим