Применяемые для сателлитов серийные подшипники качения допускают под нагрузкой относительную частоту вращения колец nВо до 6000 мин-1, а без нагрузки - до 10000 мин-1. Поэтому, при nВо < 6000 мин-1 уравнение кинематики ТДМ считается годным для дальнейшего исследования, при 6000≤nВо≤10000 мин-1 - условно годным, а при nВо>10000 мин-1 - негодным.
Условно годные ТДМ используются, если на передаче с максимальными относительными частотами вращения сателлитов они работают без нагрузки. Установить, как нагружен механизм, можно только после построения схемы ПКП.
Для исследуемой схемы ПКП частота вращения ведущего вала nвщ = 2000 мин-1. Тогда годными являются уравнения 7, 11, 12, 14, 15, 18 и 19 (см. графу 4 и 6 табл. 1).
Искомая схема ПКП должна включать четыре ТДМ, так как она должна обеспечивать получение четырех передач с передаточными числами
.2.6. Составление групп уравнений
Из семи уравнений, куда входят годные 7, 11, 12, 14, 15, 18 и 19 уравнения, описывающие соответствующие ТДМ, нужно составить различные комбинации по четыре уравнения в группе, так как в ПКП четыре передачи с передаточными числами
:Следовательно, можно составить 35 неповторяющихся групп уравнений по четыре уравнения в каждой группе. Возможные комбинации групп уравнений приведены в табл. 4. Из составленных неповторяющихся комбинаций групп уравнений отбраковываем группы, в которых каждая из р + 2 частот вращения центральных звеньев не встречается хотя бы один раз. Следовательно, для составления схемы ПКП с заданными передаточными числами в каждой группе уравнений должны присутствовать частоты вращения
тормозных звеньев, а также частота вращения ведущего nвщ и ведомого nвм звеньев. По признаку отсутствия какого-либо из перечисленных звеньев отбраковываем 14 групп уравнений (в табл. 4 отмечены курсивом).Таблица №4
7.11.12.14 | 7.11.12.15 | 7.11.12.18 | 7.11.12.19 | 7.11.14.15 |
7.11.14.18 | 7.11.14.19 | 7.11.15.18 | 7.11.15.19 | 7.11.12.15 |
7.11.14.15 | 7.12.14.18 | 7.12.14.19 | 7.12.14.15 | 7.12.15.18. |
7.12.15.19 | 7.12.18.19 | 7.14.15.18 | 7.14.15.19. | 7.12.14.18 |
7.12.15.18. | 7.15.18.19 | 7.14.18.19 | 11.12.15.19 | 11.12.18.19. |
11.14.15.19 | 11.14.18.19 | 11.12.15.18 | 11.12.14.18 | 11.12.14.15. |
11.12.15.19 | 11.12.15.18 | 11.12.14.15. | 11.12.14.19 | 11.15.18.19 |
Более компактная конструкция ПКП получается, если характеристики к планетарных механизмов, составляющих группу уравнений, достаточно близки по величине. Поэтому структурные схемы ПКП строим только для тех групп уравнений, в которых характеристика к отличается не более чем на единицу (см. табл. 4). В табл. 4 эти группы уравнений выделены жирным шрифтом с подчеркиванием (13 групп).
2.7. Построение структурных схем ТДМ и ПКП
Рассмотрим из табл. 3 годное уравнение 7 кинематики ТДМ:
В данном уравнении солнечная шестерня является ведущим звеном с частотой вращения nвщ, эпициклическая шестерня - тормозным звеном с частотой вращения n2, а водило - тормозным звеном с частотой вращения n1.
Перенесем структурную схему для уравнения 7 кинематики ТДМ в графу 5 табл. 3. Аналогично сроим структурные схемы для оставшихся годных уравнений и переносим в табл. 3. При этом у каждого звена на структурной схеме ставим индекс, указывающий, с каким тормозным звеном (1, 2, 3, 4), ведущим (вщ) или ведомым (вм) валом это звено соединяется.
Из выделенных 13 групп уравнений (см. табл. 4) удалось построить 6 структурных схем ПКП, приведенных на рис. 2.
Рис. 2. Структурные схемы ПКП
Выбор структурной схемы ПКП производим:
- по обеспечению требований компоновки ПКП в машине;
- по минимальной слоистости валов;
- по возможности оптимальной установки блокировочного фрикциона для включения прямой передачи;
- по обеспечению максимального КПД ПКП.
Требования компоновки. Какое взаимное расположение ведущего и ведомого валов ПКП наиболее целесообразно, зависит от принятой общей схемы компоновки трансмиссии. Требованиям компоновки трансмиссии удовлетворяют схемы с соосным размещением ведущего и ведомого валов, т.е. схемы 6, 23, 18, 8 и 22 на рис. 2. Однако в схемах 18, 8 и 22 невозможно обеспечить работу ПКП на всех передачах, поэтому для дальнейшего рассмотрения принимаем схемы 6 и 23.
Установка блокировочного фрикциона. В соответствии с ОКП ПКП (см. рис. 1) наименьший расчетный момент блокировочного фрикциона получается при блокировке на нейтрали ведущего звена с тормозным звеном четвертой передачи:
В оставшихся для дальнейшего анализа схемах 6, 23, 18, 8 и 22 (см. рис. 2) такую блокировку выполнить невозможно.
В схемах 6, 23 наименьший из возможных расчетный момент блокировочного фрикциона получается при блокировке ведущего звена (вщ) с тормозным звеном (1) первой передачи. Здесь расчетный момент блокировочного фрикциона
Следовательно, по обеспечению минимального расчетного момента блокировочного фрикциона структурные схемы 6, 23 ПКП идентичны. На указанных структурных схемах (см. рис. 2) блокировочные фрикционы, блокирующие ведущее и тормозное звено первой передачи, обозначены буквой Ф. Однако в схеме 6’ затруднен вывод тормозного звена второй передач, поэтому для дальнейшего рассмотрения принимаем схему 6.
Определение КПД ПКП. При выборе схемы ПКП КПД определяется на наиболее часто используемой передаче, не считая прямую. Для определения КПД ПКП удобен метод, предложенный проф. М. А. Крейнесом.
Общая методика определения КПД ПКП на любой включенной передаче представлена в виде следующих этапов:
1) по кинематической схеме ПКП с использованием уравнений кинематики ТДМ определяем кинематическое передаточное число uр на р передаче (см. выражение 2.19);
2) по выражению [1, 2.21] определяем знаки показателей степени хi у η0;
3) по выражению [1, 2.20] определяем силовое передаточное число
на р передаче;4) по выражению [1, 2.18] определяем КПД ПКП ηр на р передаче.
Принимаем, что наиболее часто используемой будет вторая передача, которая реализуется при торможении второго тормозного звена с частотой вращения n2 .
Аналитическое определение кинематического передаточного числа ПКП.
а). На структурной схеме ПКП выделяем работающие (нагруженные) на рассматриваемой передаче планетарные ряды. Не нагружены те ряды, в которых хотя бы одно звено свободно.
В схеме 23 (рис. 2) не нагружен планетарный ряд 18, у которого свободно водило, соединенное с выключенным тормозом (4) четвертой передачи. Планетарные ряды 7, 11 и 14 нагружены.
б). Для каждого работающего (нагруженного) планетарного ряда составляем уравнение кинематики, выраженное через характеристику к ряда /см. выражение (2.4)/. В нашем случае для 7, 11 и 14 планетарных рядов (рис. 2) уравнения кинематики имеют вид:
[1,2.22]в). Составляем уравнения связи. Уравнения связи составляем на основании кинематической или структурной схемы 6 ПКП (см. рис. 2). Из представленной схемы ПКП следует, что
nв7= nв11; nа7=nвщ; nа11= nа14=nвм; nс14= nс7= nв18; nв14= nс11= nс18=0.
г). В уравнениях кинематики и связи частоты вращения всех звеньев, связанных с ведущим и ведомым валами, заменяются на nвщ и nвм . В результате уравнения кинематики [1,2.22] примут вид:
[1,2.23]д). Для определения передаточного числа ПКП на второй передаче
решаем систему уравнений [1,2.23]. Сначала из второго и третьего уравнений полученной системы уравнений [1,2.23] определяемПоскольку
и , то приравняв эти уравнения получимВ итоге
е). Для проверки выполненных аналитических выкладок в полученное уравнение из табл. 3 подставляем значения характеристик планетарных рядов
. В результате получим