Смекни!
smekni.com

Разработка автомобильного стробоскопа (стр. 4 из 10)

– напряжение питания 4.5 – 5.5 В;

– потребляемый ток при частоте 8Мгц, при температуре 25 ос и напряжении питания 5В равен 13 мА.

Рисунок 4.1 – Микроконтроллер Atmega16

4.3 Описание стабилизатора напряжения КР1158ЕН501А

Серия интегральных стабилизаторов фиксированного положительного напряжения КР1158ЕНхх, КФ1158ЕНхх с малым падением напряжения вход - выход охватывает диапазон выходных напряжений от 3 до 15В. Все стабилизаторы предназначены для широкой области применения и идеально подходят для нужд автомобильной электроники, так как имеют встроенную защиту от выбросов входного напряжения при сбросе нагрузки генератора до 60 В, защиту при подключении входного напряжения в обратной полярности и от перегрева ИС. Для ограничения рассеиваемой мощности введена блокировка выходного напряжения при входном напряжении более 30 В. Стабилизаторы не выходят из строя при кратковременном подключении выводов в зеркальной последовательности

При превышении режима по одному из параметров происходит срабатывание схем внутренней защиты микросхемы - стабилизатор выключается.


Таблица 4.2 – Параметры стабилизатора напряжения

Типономинал Uo (В) Iо(А) рабочий не более Iomax(A) предельный не более Тип корпуса
КР1158ЕН501А 5 0.15 0.7 ТО-251

4.4 Описание микросхемы UC3843

Интегральная схема (ИС) UC3843 выпускается в корпусах SOIC-8 и SOIC-14, но в подавляющем большинстве случаев встречается ее модификация в корпусе DIP-8. На рисунке 4.3 представлена цоколевка.

Микросхема UC3843 предназначена для построения на ее основе стабилизированных импульсных источников питания (ИП) с широтно-импульсной модуляцией (ШИМ). Поскольку мощность выходного каскада ИС сравнительно невелика, а амплитуда выходного сигнала может достигать напряжения питания микросхемы, то в качестве ключа совместно с этой ИС применяется n-канальный МОП транзистор.

Рисунок 4.3 – Цоколевка микросхемы UC3842

Рассмотрим подробнее назначение выводов ИС для наиболее часто встречающегося восьмивыводного корпуса [7].

Comp (1) – этот вывод подключен к выходу усилителя ошибки компенсации. Для нормальной работы ИС необходимо скомпенсировать АЧХ усилителя ошибки, с этой целью к указанному выводу обычно подключается конденсатор емкостью около 100 пФ, второй вывод которого соединен с выводом 2 ИС.

Vfb(2) – вход обратной связи. Напряжение на этом выводе сравнивается с образцовым, формируемым внутри ИС. Результат сравнения модулирует скважность выходных импульсов, стабилизируя, таким образом, выходное напряжение ИП.

C/S(3) – сигнал ограничения тока. Данный вывод должен быть присоединен к резистору в цепи истока ключевого транзистора (КТ). При повышении тока через КТ (например, в случае перегрузки ИП) напряжение на этом резисторе увеличивается и, после достижения порогового значения, прекращает работу ИС и переводит КТ в закрытое состояние.

Rt/Ct (4) – вывод, предназначенный для подключения времязадающей RC-цепочки. Рабочая частота внутреннего генератора устанавливается подсоединением резистора R к опорному напряжению Vref и конденсатора С к общему выводу. Эта частота может быть изменена в достаточно широких пределах, сверху она ограничивается быстродействием КТ, а снизу - мощностью импульсного трансформатора, которая падает с уменьшением частоты. Практически частота выбирается в диапазоне 35…85 кГц. Следует заметить, что в качестве времязадающего должен применяться конденсатор с возможно большим сопротивлением постоянному току.

Gnd(5) – общий вывод.

Out (6) – выход ИС, подключается к затвору КТ через резистор.

Vcc (7) – вход питания ИС. Рассматриваемая ИС имеет некоторые весьма существенные особенности, связанные с питанием.

Vref(8) – выход внутреннего источника опорного напряжения, его выходной ток до 50 мА, напряжение 5 В.

Источник образцового напряжения используется для подключения к нему одного из плеч резистивного делителя, предназначенного для оперативной регулировки выходного напряжения ИП, а также для подключения времязадающего резистора.

ИС имеет некоторые особенности, связанные с ее питанием. Рассмотрим их подробнее. В первый момент после включения ИП в сеть внутренний генератор ИС еще не работает, и в этом режиме она потребляет от цепей питания очень маленький ток. Для питания ИС, находящейся в этом режиме, достаточно напряжения, получаемого с резистора R2 и накопленного на конденсаторе C5. Когда напряжение на этих конденсаторе достигает значения 7.8…9 В, запускается генератор ИС, и она начинает формировать на выходе импульсы управления КТ. На вторичных обмотках трансформатора ТV1, в том числе и на обмотке 3-4, появляется напряжение. Это напряжение выпрямляется импульсным диодом VD4, фильтруется конденсатором C4, и через диод VD5 подается в цепь питания ИС. В цепь питания включается стабилитрон VD6, ограничивающий напряжение на уровне 14…16 В. После того, как ИС вошла в рабочий режим, она начинает отслеживать изменения своего питающего напряжения, которое через делитель R5, R8 подается на вход обратной связи Vfb. Стабилизируя собственное напряжение питания, ИС фактически стабилизирует и все остальные напряжения, снимаемые со вторичных обмоток импульсного трансформатора.

При замыканиях в цепях вторичных обмоток, например, в результате пробоя электролитических конденсаторов или диодов, резко возрастают потери энергии в импульсном трансформаторе. В результате напряжения, получаемого с обмотки 3-4, недостаточно для поддержания нормальной работы ИС. Внутренний генератор отключается, на выходе ИС появляется напряжение низкого уровня, переводящее КТ в закрытое состояние, и микросхема оказывается вновь в режиме низкого потребления энергии. Через некоторое время ее напряжение питания возрастает до уровня, достаточного для запуска внутреннего генератора, и процесс повторяется.


5. РАСЧЕТНАЯ ЧАСТЬ

Произведем расчет делителя напряжения по каналу измерения напряжения аккумуляторной батареи

Примем R17 = 1 кОм, Uвхmax = 40 В, Uвыхmax = 5В. Тогда

, Ом определим по формуле (5.1)

Ом (5.1)

где

Для нахождения параметров время задающей цепи (R4C6) примем:

f= 60 кГц (частота преобразований),R4 = 20 кОм. Тогда С6, в нФ выразим из формулы:

(5.2)

нФ

Произведем расчет выходной мощности

, Вт преобразователя собранного на микросхеме UC3843.

(5.3)

где fр – частота импульсов идущих на лампу вспышку, Гц.


Вт

Определим коэффициент трансформации повышающего трансформатора преобразователя по формуле 5.3

, (5.3)

где

В, рабочее напряжение транзистора;

В - выходное напряжение преобразователя;

В - напряжение питания;

- коэффициент запаса;

- коэффициент трансформации;

Выразим К12 из формулы 5.3

Приведем емкость высоковольтного конденсатора к первичной цепи

мкФ (5.4)

Рисунок 5.1 – Фаза заряда дросселя


(5.5)

(5.6)

Рисунок 5.2 - Режим прерывистых токов дросселя

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

Найдем индуктивность дросселя L, в Гн приравняв (5.12) к (5.3), получим


, где (5.13)

= 60000 Гц, частота работы преобразователя.

С учетом КПД

(5.14)