Таблица 5.1 – Сводная ведомость оборудования
Номер операции | Наименование | Наименование и модель | Мощность,кВт |
1 | 2 | 3 | 4 |
005 | Бесцентровошлифовальная(предварительная обработка "на верность") | Бесцентровый шлифовальный станок 3180 | 12 |
010 | Гальваническая | Преобразователь тока АНД500/250., ванна для осталивания | 4 |
015 | Бесцентровошлифовальная | Бесцентровый шлифовальный станок 3180 | 12 |
Таблица 5.2 – Сводная ведомость приспособлений и вспомогательного инструмента
Номер | Наименование | Наименование | Обозначение, номер стандарта |
1 | 2 | 3 | 4 |
Операции | Приспособления и вспомогательный инструмент | ||
005 | Гальваническая | Приспособление | Специальная |
010 | Бесцентрово-шлифовальная | Приспособление | 70-7831-3558ГОСТ 357912-79 |
Таблица 5.3 – Сводная ведомость материалов
Номер | Наименование | Наименование | Стандарт |
1 | 2 | 3 | 4 |
Операция | Материал | ||
005 | Обезжиривание | Ацетон | |
010 | Гальваническая | Электролит №1 | |
015 | Бесцентрово-шлифовальная | СОЖ, УКРИНОЛ-1 | 2-390 ТУ 39-101-19Э-76 |
Таблица 5.4 – Сводная ведомость режущего и слесарного инструмента
Номер | Наименование | Наименование | Материал режущей части | Обозначение и номер стандарта |
1 | 2 | 3 | 4 | 5 |
Операции | Инструмент | |||
010 | Бесцентрово-шлифовальная | Шлифовальныйкруг | 24А25СМ2К | ГОСТ 2424-83 |
015 | Контрольная | Калибр | ГОСТ 16085-80 |
Припуск на обработку поверхностей ремонтируемых деталей может быть назначен по справочным таблицам или рассчитан расчетно-аналитическим методом. Расчетной величиной является минимальный припуск на обработку, достаточный для устранения на выполняемом переходе погрешностей или дефектов поверхностного слоя, полученных на предшествующем переходе или операции, и компенсации погрешностей, возникающих на выполняемом переходе.
В настоящее время отсутствует достаточный объем статистических данных, необходимых для расчета припусков в случае восстановления деталей различными методами, поэтому соответствующие припуски назначаем, используя табличные данные.
Выбор технологических баз в значительной степени определяет точность получения линейных и угловых размеров детали в процессе ремонта. При выборе технологических баз руководствуются следующими положениями:
- в качестве технологических баз при ремонте рекомендуют принимать поверхности (оси), служившие технологическими базами при изготовлении детали и не воспринимающие значительные воздействия в процессе эксплуатации;
- при прочих равных условиях меньшие погрешности имеют место, когда используют на всех операциях одни и те же базы, т.е. когда соблюдается принцип единства баз;
- желательно совмещать технологические базы с конструкторскими базами проектируемой детали, т.е. использовать принцип совмещения баз;
- поверхности, используемые в качестве технологических баз на операциях окончательной обработки должны отличаться наибольшей точностью;
- при отсутствии у ремонтируемой детали надежных технологических баз можно создавать искусственные технологические базы, включив в технологический процесс дополнительные операции, на которых эти базы обрабатывают.
Выбор технологических баз при ремонте детали сопровождают расчетом погрешностей базирования εб (погрешностей несовмещения баз), что является основой для обоснования выбранной схемы установки детали.
Схема установки считается приемлимой, если производственная погрешность εу, равная сумме погрешности базирования εб и погрешности технологической системы εтс, не превышает допуска Т на размер, выдерживаемый на выполняемом технологическом переходе или операции, т.е. εу= εб+ εтс
При выполнении последнего технологического перехода обработки поверхностей, являющихся границами какого-либо размера, производственная погрешность εу не должна превышать величины допуска Т, указанного на ремонтном чертеже.
За базовую поверхность принимается саму обрабатываемую поверхность оси коромысел.
Методику назначения и расчета режимов резания применяют в индивидуальном, мелкосерийном и серийном производстве. Режимы резания выбирают в следующем порядке.
Изучив рабочий чертёж детали и конкретный обрабатываемый элемент заготовки, определяют длину рабочего хода инструмента. Выбирают режущий инструмент и его стойкость, учитывая при этом свойства обрабатываемого материала, точность обработки, жесткость системы СПИД, величину припуска и т.п.
Руководствуясь справочной литературой, находят глубину резания t мм. Нужно стремиться к тому, чтобы глубина резания равнялась припуску на обработку, т.е.:
t=z.
Если по технологическим причинам (точность обработки, шероховатость поверхности и т.д.) такого соотношения добиться не удаётся, то при первом проходе глубина резания должна быть t1=(0,8…0,9)z, при втором проходе t2=(0,2…0,1)z.
Затем выбирают подачу s мм. Чтобы получить максимальную производительность, стремятся использовать наибольшую подачу станка, учитывая при этом заданную точность и шероховатость поверхности после обработки, жесткость системы СПИД и материал режущего инструмента.
Зная t и s для конкретной операции, определённого инструмента, материала обрабатываемой детали и условий обработки, выбирают или рассчитывают скорость резания v. Если инструмент затачивают алмазными кругами, то полученную расчетную скорость резания нужно умножить на поправочный коэффициент. Имея скорость резания, определяют расчетную частоту вращения шпинделя станка либо число двойных ходов стола и резца. Сверяя полученное значение nД с паспортными данными станка устанавливают фактическую частоту вращения шпинделя nФ максимально приближенную к расчетной. Определив силу резания РР по справочным данным, подсчитывают эффективную мощность резания NЭ. Значение NЭ должно быть меньшим либо равным мощности электродвигателя станка, т.е. NЭ< NДВ. В этом случае обработка детали возможна.
Необходимость механической обработки обусловливается тем, что топология, размеры и формы восстанавливаемых поверхностей деталей только приближены к необходимым размерам и технологическим условиям на их восстановление.
К настоящему времени в условиях практики сложились четыре схемы базирования и механической обработки деталей, в зависимости от группы их восстановления. По этим основным технологическим схемам обработки ведутся дальнейшие расчеты величин припусков у покрытий под механическую
обработку.
Припуском под механическую обработку следует называть слой металла, который удаляется с поверхности покрытий в процессе получения необходимых параметров детали. Припуск должен: а) компенсировать погрешности, полученные в результате наращивания изношенной поверхности детали железом; б) компенсировать погрешности, получаемые в результате выполнения рассматриваемых операций.
Устанавливать величину припуска следует для каждой операции в отдельности с учетом всех предъявляемых требований к восстанавливаемой поверхности.
Погрешности, возникающие при механической обработке поверхностей, носят сложный характер взаимодействия и зависят от многих причин. Погрешности от неточностей износа и упругих деформаций оборудования, инструмента, приспособлений, а также получаемые искажения формы должны учитываться операционным допуском. Операционный допуск по своей величине должен соответствовать суммарной погрешности от указанных причин.
Погрешности, полученные при выполнении предыдущей операции, шероховатость поверхности, глубина дефектного слоя, остаточные напряжения, допуск отклонения размера "допуск в металл" и погрешности, полученные на данной операции, неточность базирования, от усилий зажатия должны быть компенсированы величиной припуска.
Общая толщина покрытия электролитического железа, наращиваемого на изношенные поверхности деталей, определяется:
h = ΔhКФ+ΔhКИ+Δ, (7.1)
где ΔhКФ – слой покрытия, компенсирующий нарушение геометрической формы. Определяется величиной металла, снятого с восстанавливаемой поверхности детали, при предварительной механической обработке "на верность", для оси коромысел не превышает 0,15 мм;
ΔhКИ – слой покрытия, компенсирующий износ восстанавливаемой поверхности детали;
Δ – припуск на механическую обработку.
При бесцентровом шлифовании с продольной или радиальной подачами величина припуска на механическую обработку [1]:
2Δ=0,072+0,9δ, (7.2)
где δ – допуск на размер, равен 0,012.
2Δ=0,072+0,9*0,012=0,0828 мм, (на одну сторону – 0,0414 мм).
Износ детали равен: (16-15.94)*1.25=0.075 мм, (на одну сторону – 0,0375 мм).
Слой наращиваемого металла составит:
h=0.075+0.0375+0.0414=0.154 мм.
Принимаем поперечную подачу (глубина шлифования) h= 0,02/0,01 мм/об (черновое/чистовое шлифование) и окружную скорость детали соответственно V=20/2 м/мин [3].
Число проходов:
, (7.3)