Удельная нормальная сила (МПа)
. Значения tgβ определяют для λ=0,285 по таблице и заносят в гр. 6, а значения pN — в гр. 7.Удельная сила (МПа), действующая вдоль шатуна (гр. 9):
Удельная сила (МПа), действующая по радиусу кривошипа (гр. 11):
Удельная (гр.13) и полная (гр.14) тангенциальные силы (МПа и кН):
иПо данным таблицы строят графики изменения удельных сил pj, p, ps, pN, pK и рT в зависимости от изменения угла поворота коленчатого вала φ.
Среднее значение тангенциальной силы за цикл:
по данным теплового расчета
Н;Крутящие моменты. Крутящий момент одного цилиндра
Н·мПериод изменения крутящего момента четырехтактного двигателя с равными интервалами между вспышками
Суммирование значений крутящих моментов всех четырех цилиндров двигателя осуществляется табличным методом через каждые 10° угла поворота коленчатого вала и по полученным данным строится кривая Мкр в масштабе ММ= 10 Н·м в мм.
Средний крутящий момент двигателя:
По данным теплового расчета
Н·м;Максимальный и минимальный крутящие моменты (рис. 10.2, д)
Mкp.max=500 Н·м; Мкр.min= -212 Н·м.
Графики динамического расчёта карбюраторного двигателя:
φ° | Цилиндры | Мкр.ц, Н·м | |||||||
1-й | 2-й | 3-й | 4-й | ||||||
φ° криво- шипа | Мкр.ц, Н·м | φ° криво- шипа | Мкр.ц, Н·м | φ° криво- шипа | Мкр.ц, Н·м | φ° криво- шипа | Мкр.ц, Н·м | ||
0 | 0 | 0 | 180 | 0 | 360 | 0 | 540 | 0 | 0 |
30 | 30 | -180 | 210 | -75 | 390 | 240 | 570 | -78 | -93 |
60 | 60 | -103 | 240 | -133 | 420 | 161 | 600 | -137 | -212 |
90 | 90 | 77 | 270 | -84 | 450 | 221 | 630 | -83 | 131 |
120 | 120 | 132 | 300 | 71 | 480 | 199 | 660 | 97 | 499 |
150 | 150 | 75 | 330 | 90 | 510 | 97 | 690 | 176 | 438 |
180 | 180 | 0 | 360 | 0 | 540 | 0 | 720 | 0 | 0 |
ВЫВОД: Вследствие применения новых более лёгких конструкционных материалов мы получили улучшенные параметры сил и моментов, действующих на кривошипно-шатунный механизм. После чего можно предположить, что повысится степень уравновешенности двигателя.
Конструирование и расчёт на прочность деталей двигателя
Расчет поршня бензинового двигателя
На основании данных расчетов (теплового, скоростной характеристики и динамического) получили: диаметр цилиндра D =79 мм, ход поршня S=80, действительное максимальное давление сгорания Рд=6,233 МПа при nм=3000 об/мин, площадь поршня Fп= 48,99 см2 , наибольшую нормальную силу Nmax= 0,0044 МН при φ=370°, массу поршневой группы mn= 0,3916 кг, частоту вращения nx.x max=6000 мин-1 и λ=0,285.
В соответствии с существующими аналогичными двигателями и с учетом соотношений, принимаем толщину днища поршня δ=7,5 мм, высоту поршня Н= 88 мм; высоту юбки поршня hю=58 мм, радиальную толщину кольца t=3,5 мм, радиальный зазор кольца в канавке поршня ∆t=0,8 мм, толщину стенки головки поршня S=5 мм, величину верхней кольцевой перемычки hп=3,5 мм, число и диаметр масляных каналов в поршне
=10 и dм=1 мм. Материал поршня — эвтектический алюминиевый сплав - 1/К; материал гильзы цилиндра — серый чугун, 1/К.Напряжение изгиба в днище поршня:
МПа,Где
мм.Днище поршня должно быть усилено ребрами жесткости. Кроме того, в целях повышения износо- и термостойкости поршня целесообразно осуществить твердое анодирование днища и огневого пояса, что уменьшит возможности перегрева и прогорания днища, также пригорания верхнего компрессионного кольца.
Напряжение сжатия в сечении х — x
МПа,где
МН; м2; мм; мм2;Напряжение разрыва в сечении х — х:
максимальная угловая скорость холостого хода
рад/с;масса головки поршня с кольцами, расположенными выше сечения х - х:
кг;максимальная разрывающая сила
МН;напряжение разрыва
МПа.Напряжения в верхней кольцевой перемычке: среза
МПа;Изгиба
МПа;Сложное
МПа.Удельное давление поршня на стенку цилиндра:
МПа; МПа.Ускорение приработки юбки поршня, а также уменьшение трения и снижения износа пары - юбка поршня — стенка цилиндра — достигается покрытием юбки поршня тонким (0,003 — 0,005 мм) слоем олова, свинца или оловянно-свинцового сплава.
Гарантированная подвижность поршня в цилиндре достигается за счет установления диаметральных зазоров между цилиндром и поршнем при их неодинаковом расширении в верхнем сечении головки поршня
и нижнем сечении юбки .Диаметры головки и юбки поршня с учетом монтажных зазоров:
где
мм; мм.Диаметральные зазоры в горячем состоянии
где Тц=383 К, Тг=593 К, Тю =413 К приняты с учетом жидкостного охлаждения двигателя.
Расчёт элементов системы охлаждения
Расчет жидкостного насоса карбюраторного двигателя
По данным теплового баланса количество теплоты, отводимой от двигателя жидкостью: QВ = 60836 Дж/с; средняя теплоемкость жидкости сж = 4187 Дж/(кг∙К), средняя плотность жидкости рж ≈ 1000 кг/м3; напор, создаваемый насосом, принимается рЖ = 120000 Па; частота вращения насоса nВ.И.=4600мин-1. Циркуляционный расход жидкости в системе охлаждения
Gж=QВ/(сжрж∆Тж)=60836/(4187∙1000∙9,6) = 0,00151 м3/с,
где ∆ТЖ = 9,6 К — температурный перепад жидкости при принудительной циркуляции.
Расчетная производительность насоса
Gж.р = Gж/η = 0,00151/0,82=0,00184м3/с,
где η = 0,82 — коэффициент подачи насоса.
Радиус входного отверстия крыльчатки
r1=
= = 0,0206 м,