Смекни!
smekni.com

Теория автоматического управления судовой аппаратуры (стр. 1 из 3)

Реферат не тему:

"ТАУ (Теория автоматического управления) судовой аппаратуры"


Основной задачей АСР является поддержание заданных значений регулируемых параметров ОР в статических и динамических режимах работы с отклонениями, не превышающими норм, предписанных правилами технической эксплуатации и Регистра СССР.

Из структурных схем видно, что АСР – это замкнутые системы, состоящие из ряда последовательно соединенных элементов, выходной сигнал каждого из которых является входным сигналом последующего. Так, выходной сигнал ОР – значение регулируемого параметра х – является входным сигналом измерителя и т. д. В конечном счете выходной сигнал ИО является входным сигналом ОР, определяющим количество рабочего тела, подводимого к объекту в единицу времени. А как следует из условия установившегося режима, при равенстве подвода и отвода объекта

Рис. 1. Статические характеристики АСР:

а – с положительной неравномерностью; б – с нулевой неравномерностью;

в-с отрицательной неравномерностью

регулируемый параметр имеет определенное неизменное значение, т. е. если W01 = W02, то x0 = idem. Однако установившихся режимов для каждой системы в диапазоне нагрузок от нулевого значения W01 = W02 = 0 до максимального W01= W02 = Womax существует бесконечное множество и каждому значению нагрузки может соответствовать свое значение регулируемого параметра xo при неизменной настройке регулятора (задании R).

Таким образом, для любой АСР при установившихся режимах входными величинами являются значения нагрузки Wo и задание R, определяемое настройкой регулятора, а выходными – значения регулируемого параметра xо. Зависимость установившихся значений регулируемого параметра от нагрузки при неизменной настройке регулятора описывается статической характеристикой АСР. Статические характеристики АСР (рис. 1) строятся расчетным путем по уравнениям статики, а в условиях эксплуатации – по значениям параметров, определяемых с помощью КИП. Различные АСР поддерживают заданные значения регулируемых параметров в зависимости от нагрузки с различной статической точностью. Неточность поддержания установившихся значений регулируемых параметров оценивается статической неравномерностью и нечувствительностью АСР.

Для примера по опытным данным построим статическую характеристику АСР уровня воды в барабане котла. Регулируемым параметром рассматриваемой АСР является уровень воды h в барабане котла, а нагрузкой – расход пара Dn. He меняя настройки регулятора, определим установившиеся значения уровня при различных значениях нагрузки. Нагрузку будем изменять плавно от нулевого значения до номинального и обратно, фиксируя значения уровня через каждые 25% от Dон.

При нулевой нагрузке (Dоп = Dопв = 0) клапаны l и т закрыты, а в барабане устанавливается уровень, значение которого на графике (рис. 1, а) соответствует ординате точки /. Приоткрытие клапана 1 на величину, соответствующую 25% от Dон приведет к нарушению равновесия и снижению уровня. Поплавковый регулятор будет увеличивать открытие клапана m до тех пор, пока не наступит массовое равенство между новым расходом пара и питательной воды при установившемся значении уровня. Эти новый значения параметров определят координаты точки 2. С дальнейшим увеличением нагрузки до номинального значения Doн по аналогии определятся координаты точек 3, 4 и 5.

При уменьшении нагрузки движение клапана m в обратном направлении начнется после того, как будут выбраны зазоры в звеньях системы и преодолены силы сухого трения штока клапана в сальнике. Эти силы преодолеваются за счет выталкивающей силы поплавка при повышении уровня до значения, определяющего ординату точки 6. С дальнейшим уменьшением нагрузки определяются координаты точек 7, 8, 9 и 10.

Соединив полученные точки, построим статическую характеристику АСР в виде зоны нечувствительности. Нечувствительность ±xнеч определяется половиной ширины зоны, взятой по оси регулируемого параметра.

Нечувствительность АСР – это изменение регулируемого параметра ±xнеч на которое система не реагирует из-за зазоров и сил сухого трения в ее звеньях.

Для идеальной АСР, в звеньях которой отсутствуют силы сухого трения и зазоры, статическая характеристика примет вид линии I, проходящей посредине зоны нечувствительности. Тогда, как следует из графика (рис. 1, а), идеальная АСР будет поддерживать заданный уровень hoo при нулевой нагрузке, а при номинальной уровень снизится до величины hoн. Разность этих значений уровня определяет величину статической неравномерности АСР, т. е. xнер = hoohoн Чем больше неравномерность, тем больше наклон статической характеристики.

В дальнейшем под неравномерностью АСР будем понимать разность установившихся значений регулируемого параметра, взятых при нулевой и номинальной нагрузках при условии неизменной настройки регулятора. В зависимости от свойств регулятора и места установки ИО на ОР неравномерность АСР может быть различной по значению и знаку.

На рис. 1 представлены статические характеристики АСР, для первой из которых неравномерность положительная, для второй – нулевая, а для третьей – отрицательная. Неравномерность измеряется в тех же единицах, что и регулируемый параметр. Если значение неравномерности равно нулю, система считается астатической, а если отличается от нуля статической.

Статическая характеристика АСР может быть линейной (рис. 1, а и б) либо иметь кривизну (рис. 1, в). Вид характеристики зависит от свойств самого регулятора, характеристик ИО и ОР.

Вопросы устойчивости, характеризующейся динамическими свойствами АСР, являются основными при изучении теории и эксплуатации средств автоматического регулирования.

Определение температуры является одним из сложных и трудоемких процессов измерения, основанным на теплообмене между телами. Приборы, входящие в тепловой контакт с контролируемой средой, по показаниям которых определяется ее температура, называются термометрами, а устройства, предназначенные для регулирования температуры, – терморегуляторами. Неотъемлемой составной частью термометров и измерителей терморегуляторов являются ЧЭ, физические свойства которых изменяются при нагреве. Измерители разделяют на механические и электрические.

К механическим относятся измерители, действие которых основано на тепловом расширении жидких или твердых тел либо на изменении давления газов или паров жидкости в замкнутых системах. Выходными сигналами таких измерителей являются перемещения либо усилия, однозначно определяемые изменением температуры.

Работа жидкостных измерителей температуры основана на неодинаковом расширении при нагреве оболочки и находящейся в ней жидкости. Примером таких измерителей являются стеклянные термометры, состоящие из баллончика с припаянной к нему прозрачной капиллярной трубкой (капилляром) и шкалы. Для заполнения баллончика выбирается жидкость, коэффициент расширения которой в 15–30 раз больше, чем у оболочки. Поэтому приращение температуры вызывает увеличение объема жидкости и ее вытеснение из оболочки в капилляр, в котором положение кромки жидкости по шкале определяет значение температуры. Оболочку и капиллярные трубки изготавливают из стекла или кварца. Наполнителями могут быть жидкости (спирт, толуол или пентан) либо текучие металлы (ртуть или галлий).

Жидкостный измеритель температуры (рис. 2, а) состоит из металлического термопатрона 1 и сильфонной камеры 3, связанных между собой металлическим гибким капилляром 2. Внутренняя полость их герметична и в зависимости от диапазона измеряемых температур полностью заполняется глицерином, ксилолом или ртутью. Термопатрон помещается в зону контролируемой среды, при увеличении температуры которой происходит увеличение объема наполнителя и перетекание его по капилляру в камеру сильфона, вызывающее перемещение Донышка последнего. Выходным сигналом измерителя является перемещение уДштока 5, жестко соединенного с донышком сильфона.

Рис. 2. Измерители температуры:

а – манометрический; б – объемный; в–дилатометрический; г – биметаллический; д – с термосопротивлением; е – термоэлектрический

Перемещение пропорционально изменению температуры , т. е. статическая характеристика измерителя линейна. При понижении температуры объем наполнителя уменьшается, и донышко сильфона движется в обратном направлении под действием возвратной пружины 4. Жидкостные измерители обладают большими перестановочными усилиями. Однако они подвержены 'влиянию температуры окружающей среды, которое сказывается тем больше, чем меньше разность температур окружающей и контролируемой сред.

Аналогичные принцип действия и свойства имеет измеритель с твердым наполнителем термометрической системы. Измеритель выполняется в виде жестко закрепленного сильфона (рис. 2, б), внутренняя полость которого герметична и заполнена аморфным телом (обычно воском). При изменении температуры среды, омывающей сильфон, объем наполнителя увеличивается, вызывая перемещение донышка сильфона. Для уменьшения тепловой инерционности датчика воск перемешивают с медными опилками.