Смекни!
smekni.com

Тележка мостового крана (стр. 4 из 7)

Вес верхних блоков – 98 Н; - 8

Вес тормоза передвижения – 206 Н; - 9

Вес тормоза подъема – 373 Н. – 10

(Некоторые значения приняты исходя из технических соображений).

=18983 Н, приму
=20 кН.

Координаты точек X (мм):

1=-928

2=730

3=629

4=-99

5=0

6=0

7=0

8=0

9=266

10=554

мм

Координаты точек Y (мм):

1=773

2=-251

3=773

4=-400

5=0

6=123

7=205

8=370

9=888

10=-575

4.2 Определяю положение не приводных колес, т. е. базу тележки, из условия одинаковой нагрузки на приводные и ходовые колеса:

мм

Приму расстояние равное 1400 мм, конструктивно.

4.3 Определение нагрузок на ходовые колеса тележки в порожнем состоянии и от веса груза

Нагрузки находятся по следующим формулам:

1) Порожняя тележка: [2. ф. 3.3]

Н

Н

Н

Н

2) От веса груза: [2. ф. 3.4]

Н

Н

Н

Н

3) Статическая нагрузка на ходовые колеса в груженом положении: [2. ф. 3.5]

Н

Н

Н

Н

Погрешность:

5. Проверочные расчеты механизмов

5.1 Механизм подъема груза

5.1.1 Проверка двигателя на время разгона

Рекомендуемый диапазон времени разгона 2...4 с (ВНИИПТМАШ) до Q=75т.

Экспериментально получено, что для крана Q=8 т значения времени будут следующими:

Мех. подъема груза – 2 с.

Мех. передвижения тележки – 3-4 с.

Мех. передвижения крана – 6 с. [рис. 2.4.1.]

Для мех. подъема груза наибольшее время разгона получается при разгоне на подъем. Его можно определить по приближенной формуле:

[2. ф.4.1]

где,

- угловая скорость двигателя, рад/с;

- приведенный к валу двигателя момент инерции при разгоне всех движущихся масс, кг м кв.;

- среднепусковой момент двигателя, Нм;

- момент статических сопротивлений при разгоне, приведенный к валу двигателя, Нм.

а)

[2. ф.4.2]

где,

- кратность среднепускового момента двигателя, для дв. с фазным ротором значение
=1,5[табл. 2.2.17 стр.42]

тогда,

Нм

Значение

[2. ф.4.3]

здесь

- момент инерции при разгоне всех вращающихся частей механизма, приведенный к валу двигателя:

б)

[2. ф.4.4]

где

=1,1...1,2 – коэффициент учета инерции вращающихся масс расположенных на втором, третьем и последующих валах механизма;

-момент инерции вращающихся масс, расположенных на первом валу, равен сумме моментов инерции ротора дв. -
, муфт -
, тормозного шкива -
.

- момент инерции при разгоне поступательно движущихся частей механизма плюс груза, приведенный к валу дв.

кг м кв.

где,

- масса шкива, кг

- радиус шкива, м

- коэффициент распределения массы (
=0,6 – рекомендуется).

[2. стр. 85]

Тогда,

кг м кв.

Отсюда,

кг м кв.

в) Угловая скорость

рад/с.

г) Значения

и
находим из:

[2. ф.4.5]

кг – масса подвески и груза. [2. ф.4.6]

[2. ф.4.7]

где,

G – вес груза и подвески (8000*9,8=78400 Н);

r – радиус барабана, с учетом оси навивки каната (326 мм);

U – полное передаточное число мех., равное произведению передаточных чисел полиспаста и лебедки (U=Uп*Uл=2*40=80).

Тогда,

кг м2.

кг м2.

Н

Отсюда,

с

д) Среднее ускорение:

м/с

5.1.2 Проверка времени торможения.

Не рассчитывается, т. к. это время можно задать и изменить с помощью регулировки тормоза подъема груза.

5.1.3 Проверка двигателя на нагрев

Проверку проводим по методу проверки по эквивалентному моменту.

Условие проверки:

[2. ф.4.8]

где,

- эквивалентный момент на валу двигателя, Нм;

- номинальный момент двигателя, Нм.

где,

,
- соответственно статические моменты на валу двигателя, возникающие при подъеме и опускании груза;

- время разгона мех. при работе с грузом;

;
- соответственно время установившегося движения при подъеме и опускании;

- коэффициент, учитывающий ухудшение условий охлаждения двигателя в период пуска.

а) Статические моменты при подъеме и опускании:

где,

– вес j груза;

- КПД механизма при работе с j-м грузом.

Для ГГР – М3 по типовому графику [2. Приложение 4. стр.289], определим, что груз поднимается и опускается (при рабочем цикле 10) G – 4 раза; 0,7G – 3 раза; 0,6G – 3 раза.

Поверяю

,
при большем грузе, т. е. при
=
кН