Смекни!
smekni.com

Совершенствование технологии контроля автосцепочного устройства на базе пассажирского вагонного депо Ростов (стр. 11 из 17)


а) б)

Рисунок 2.2 - магнитопорошковый метод контроля хвостовика автосцепки

2.8.2 Приспособление к строгальному (фрезерному) станку для обработки поверхностей контура зацепления контура

Наплавленные поверхности деталей автосцепного устройства должны иметь установленные правилами ремонта размеры и необходимую чистоту поверхности, что достигается механической обработкой на металлорежущих станках (строгальном, токарном, фрезерном) и специальных приспособлениях. Небольшие поверхности обрабатывают на обдирочно-шлифовальных станках (стационарных наждачных точилах).

Поверхности контура зацепления могут обрабатываться на строгальном, фрезерном и долбежном станках с применением специальных приспособлений. Приспособление для обработки поверхностей контура зацепления на строгальном станке состоит из двух частей: поддерживающего кронштейна (рисунок 2.3) и поворотно-установочного устройства. Планка 2 кронштейна, на которой имеются зажимы для крепления хвостовика автосцепки, может поворачиваться вокруг вертикальной оси. Установка одной части приспособления относительно другой обеспечивается с помощью штифтов 3. На основании 9 закреплена направляющая 14, по которой при вращении винта 13 перемещается подвижная часть 10 приспособления, служащая одновременно опорой для корпуса автосцепки. На неподвижной части основания укреплена шкала, а на подвижной опоре — стрелка 12. Шкала предназначена для отсчета угла наклона автосцепки по отношению к плоскости движения резца. Это позволяет точно выдерживать ломаный вертикальный профиль поверхностей контура зацепления при их обработке.

Для обработки поверхностей контура зацепления на боковой стенке стола 8 строгального станка закрепляют поддерживающий кронштейн, а на столе — поворотно-установочное устройство так, чтобы направляющие штифты кронштейна вошли в установочные втулки 4. Ребра большого зуба корпуса должны располагаться между скобами 7, а хвостовик должен опираться на кронштейн. Корпус крепят зажимами, болтами 6 и поддерживающим болтом 5. Затем корпус устанавливают перпендикулярно линии движения резца и обрабатывают вертикальную площадку поверхности, а потом, поворачивая корпус с помощью винта 13 на необходимый угол по шкале, обрабатывают наклонные участки поверхности, создавая ломаный профиль, предусмотренный чертежом. Перед обработкой каждого участка поверхности подвижную опору закрепляют стопорными гайками 75.

Рисунок 2.3 - Приспособление к строгальному (фрезерному) станку для обработки поверхностей контура зацепления контура.

Данное приспособление применяют также для обработки поверхностей контура зацепления на горизонтально-фрезерном станке, но для этого его части и соединяют посредством приварки косынок и угольников.


3. Анализ неисправностей автосцепочного устройства

Износы и повреждения деталей автосцепного устройства можно разделить на две группы: естественные износы, появляющиеся при нормальной работе деталей; случайные повреждения, возникающие в результаты ненормальных условий работы или наличия дефектов, допущенных при изготовлении.

Установлено, что из общего количества изымаемых из эксплуатации автосцепок большинство бракуется вследствие наличия трещин.

Возможные дефекты корпуса автосцепки представим в таблице 15.

Таблица 15 – Возможные дефекты корпуса автосцепки СА-3.

Эскиз деталей с возможными дефектами Расшифровка дефектов
1 – трещины; 26 – износ нижней перемычки малого зуба; 27 – износ места опоры шейки замкодержателя;
2 – трещины;
3, 4 - трещины; 6 - уширение зева; 7 - износ по длине малого зуба; 8 - износ тяговой поверхности большого зуба; 9 - износ ударной станки зева; 10 - износ контура зацепления; 19 - износ торцевой части хвостовика; 20 - износ перемычки хвостовика; 21 - износ отверстия хвостовика;
5 – трещины;
11 - износ по ширине кармана; 13 – износ; 15 – износ шипа; 16 – излом шипа; 17 – износ полочки для плеча предохранителя; 18 – излом полочки для плеча предохранителя;
14 – изменение положения отверстий относительно контура зацепления;

22 – износ поверхности хвостовика;

23 – изгиб хвостовика;

3 – трещины;

24 – износ ограничителя вертикальных перемещений;

25 – изгиб и излом ограничителя вертикальных перемещений;

12 – износ отверстия для запорного болта;

17 – износ торцевой части хвостовика автосцепки СА-3М.


Трещины обнаруживаются также у значительного количества автосцепок, поступающих в ремонт. Причем количество это прямо зависит от срока службы деталей.

В процессе эксплуатации могут появиться два вида излома деталей – хрупкий и усталостный. Наличие внутренних концентраторов напряжений при неблагоприятных условиях эксплуатации (низкая температура, большинство тяговые или ударные нагрузки) приводит к хрупкому разрушению. Внешние концентраторы напряжений (горячие трещины, насечки и др.) чаще всего являются причинами появления и развития усталостных трещин.

Почти всегда в местах излома хвостовика корпуса обнаруживаются литейные дефекты в виде тонкостенности, спая, раковин или признаки нарушения режима термообработки отливки. В зоне перехода от головы к хвостовику, где часто возникают трещины, имеются также и внешние (геометрические) концентраторы напряжений, способствующие разрушению.

Установлено, что у длительно работающих автосцепок происходит старение металла, в результате чего снижается его пластичность и повышается температура хладноломкости., что в условиях больших нагрузок также может привести к хрупкому излому корпуса автосцепки.

Основная причина повышенных износов поверхностей клинового соединения хвостовика корпуса с хомутом – несоответствие конструкции данного узла современным условиям эксплуатации. Величина напряжений в зоне контакта клина с телом хомута и хвостовика при максимальных тяговых и ударных нагрузках превышает предел текучести используемого металла, в результате чего происходит смятие поверхностей, а иногда и разрушение деталей. В усиленных автосцепках клиновое соединение заменено более прочным – шарнирным.

В эксплуатации иногда происходит изгиб хвостовика корпуса и обрыв маятниковых подвесок при заклинивании автосцепок во время прохода вагонов через горб сортировочной горки, а также при превышении допускаемых скоростей соударения вагонов, у которых имеется большая разница уровней автосцепок. Изгибы в горизонтальной плоскости могут произойти при проходе вагонов по кривым участкам пути с радиусом менее допустимого или во время соударения автосцепок, имеющих ненормальные боковые отклонения.

Наиболее распространенным видом естественного износа является истирание рабочих поверхностей деталей и в результате этого потеря ими первоначальных размеров или формы. Истиранию подвержены ударно-тяговые поверхности головы корпуса автосцепки, поверхности горловины корпуса поглощающего аппарата и фрикционных клиньев, где имеет место сухое трение при больших нагрузках.

Детали с дефектами или не имеющие маркировки предприятия - изготовителя, ремонту не подлежат и сдаются в металлолом. При этом на каждый утилизированный корпус автосцепки составляется акт.

Перечень дефектов, при наличии которых детали автосцепного устройства не допускаются к ремонту и подлежат сдаче в металлолом, представим в виде таблицы 16.

Таблица 16 – Перечень дефектов деталей автосцепочного устройства, не допускающихся к ремонту.