Смекни!
smekni.com

Проектирование судового двигателя внутреннего сгорания (стр. 1 из 7)

Министерство образования Российской Федерации

Филиал Санкт-Петербургского государственного морского технического университета

СЕВМАШВТУЗ

Курсовой проект

Дисциплина: “Судовые дизеля”

Тема “Проектирование судового двигателя внутреннего сгорания”

Северодвинск

2006


Исходные данные

Тип судна – сухогруз

Водоизмещение D=2400тонн

Скорость судна u=16 узлов

Степень сжатия e=15

Массовая доля углерода С=84%

Массовая доля водорода H=15%

Массовая доля кислорода О=1%


Введение

Судовая энергетическая установка (СЭУ) предназначена для обеспечения движения судна и снабжения необходимой энергией всех судовых потребителей. От СЭУ существенно зависят экономические показатели транспортного судна, уровень его строительной стоимости и текущих эксплуатационных затрат по содержанию. Затраты на СЭУ в среднем составляют 20...35 % общей строительной стоимости судна и 40...60 % затрат на содержание судна на ходу. Кроме того, основные качества транспортных судов - безопасность плавания, мореходность и провозоспособность - в значительной мере обеспечиваются СЭУ. В связи с этим проектирование СЭУ является одним из важнейших этапов создания судна.

Механизмы и оборудование СЭУ, предназначенные для обеспечения движения судна, составляют главную энергетическую установку (ГЭУ). Основными элементами ГЭУ являются главный двигатель, валопровод и движитель.

Источники электроэнергии с первичными двигателями, преобразователями и передаточными трассами составляют электроэнергетическую установку.

Технические комплексы, обеспечивающие различные судовые нужды (опреснение воды, паровое отопление, кондиционирование воздуха и т.д.), относятся к вспомогательной установке.

Функционирование главной, вспомогательной и электроэнергетической установок обеспечивается различными системами, основными из которых являются топливные, масляные, охлаждения, сжатого воздуха, газоотвода и др.

Эффективное использование ДЭУ, надёжная их эксплуатация и высокая производительность труда обслуживающего персонала обеспечиваются комплексной автоматизацией установки. Автоматизированные ДЭУ с безвахтенным обслуживаем получили широкое распространение на судах морского флота.

1. Выбор главных двигателей и основных параметров

1.1 Определение суммарных мощностей главных двигателей

Примерное значение мощности можно определить при помощи адмиралтейского коэффициента:

кВт

Где: D=2400т – водоизмещение судна

u=16 узлов – скорость судна

1/С – обратный адмиралтейский коэффициент

Принимаем СОД фирмы S.E.M.T. с эффективной мощностью Nец =650 э.л.с., числом цилиндров i=6, отношением S/D=1.2, числом оборотов n=520 об/мин

1.2 Выбор основных параметров дизеля

Одна из основных задач проектирования – правильный выбор типа главного двигателя. Исходным данным для этого служит тип и назначение судна, районы плавания, режимы работы установок, условия размещения двигателей, требования к массогабаритным показателям установки, а также требования регистра.

У меня двигатель СОД, может устанавливаться на СДУ и тепловозах, работает на лёгком топливе, тронковый, четырёхтактный, 6 цилиндровый (V-образный).

Мощность дизеля:

По агрегатной мощности (Nе) дизель относится к дизелям мощным (2000-20000) л.с.

Цилиндровая мощность изменяется в широких приделах в зависимости от D, S, n и Pe:


Nец=(Nе)/(i)=3328/6=554.7 л.с. < 650 л.с. (у двигателя)

Частота вращения и средняя скорость поршня:

Главным критерием быстроходности дизеля яв-ся средняя скорость поршня:

Cm=

Зная агрегатную и цилиндрическую мощность, число оборотов, принимаем Ø цилиндра D и ход поршня S.

Выбранные значения D и S, их отношение и средняя скорость поршня Cm должны соответствовать классу проектируемого двигателя:

для СОД

n = 300÷700 об/мин

S/D = 1.0÷1.8

Cm = 7÷10 м/с

Принимаем для СОД при частоте оборотов n =520 об/мин; S=470 мм; D=390 мм

Cm=

м/с.

Габариты ДВС:

-Длина двигателя на фундаментной раме:

L=i×a×D=6×1,3×390=3042 мм

Где: I=6 - число цилиндров

а=1.2÷1.4 – для 4-х тактного двигателя.

D=390 мм - диаметр цилиндра,

-Ширина двигателя на фундаментальной раме:

B=b×S=2.2×470=1034 мм.

Где: b=2.1÷2.4- коэффициент для СОД

S=470 мм – ход поршня

-Высота двигателя от оси коленчатого вала до крайней верхней точки:

H1=b1×S=4.8×470=2256 мм.

Где: b1=4.6÷5 - коэффициент для тронковых ДВС

-Расстояние по высоте от оси коленчатого вала до нижней точки:

H2=b2×S=1.5×470=705 мм.

Где: b2=1.25÷2

-Общая высота двигателя:

Hд=H1+H2=2961 мм.

-Масса двигателя через удельную массу:

Gд=gд×Nе=15×2447=36705 кг

Где: gд=10÷20 кг/кВт - удельная масса

-После принятия решения о размере двигателя следует оценить значения среднего эффективного давления:

,

Где: z=0,5- коэффициент тактности для четырехтактных дизелей.

Полученное значение Pe сравниваем со значением двигателей и делаем вывод о возможности достижения в проектном решении величины Nе.


2. Тепловой расчёт ДВС

2.1 Теплота сгорания топлива

Низшая теплота сгорания топлива может быть определена по формуле Д.И.Менделеева:

QH=33,9·С+103·Н-10,9· (О-S)– 2,5·W

Полагая С=84%, Н=15%, О2=1%, получим

QН=33,9×0,84+103×0,15-10,9×0,01=43.817 МДж/кг

2.2 Процесс пополнения

-Давление в конце пополнения:

=
МПа

Где: j=0.6÷0.7- коэффициент скорости истечения.

Т0=293К - температура окружающей среды.

С1 - скорость поступающего заряда через сечения клапана

С1m×k=8.14×7.5=61.05 м/с

к=6÷9 - коэффициент, выражающий отношение площади поршня F к расчётной площади сечения всех полностью открытых впускных клапанов.

Cm=8.14 м/с – средняя скорость поршня

C2=1,57×C1=1,57×61.05=95.85 м/с – наибольшая скорость протекания свежего заряда через выпускной клапан.

-Коэффициент остаточных газов для расчёта четырёхтактного двигателя с наддувом:

=

Где: Dt=170C – повышение температуры воздуха вследствие нагрева в системе двигателя.

e=15 – степень сжатия

Тг=800К – температура остаточных газов

Рг=105000 Па – давление остаточных газов

-Температура смеси в конце наполнения:

-Коэффициент наполнения через коэффициент остаточных газов:

2.3 Процесс сжатия

Давление конца сжатия:

МПа

Где: n1 =1,38- показатель политропы

Температура конца сжатия:

К

2.4 Процесс сгорания

Прежде всего необходимо определить кол-во воздуха, теоретически необходимого для сгорания 1 кг. топлива:

(кмоль/кг)

Действительное количество воздуха:

Ms=a×M0=1.8×0.51=0,918 кмоль/кг

Где: a=1.3÷1.8 – коэффициент избытка воздуха при горении

Мольное количество смеси воздуха и остаточных газов, находящихся в цилиндре до горения: M1=(1+gг)×MS =(1+0,036)×0,978=1.005 кмоль/кг

Количество молей продуктов сгорания:


(кмоль/кг)

Действительный коэффициент молекулярного изменения:

Мольное количество остаточных газов:

кмоль/кг

0.955=0.918+0.0375

СО2:

:

0.07+0.075=0.145

Количество СО2:

Х=0,48=48%

Н2О:

Х=0,52=52%

0.0375=0.018+0.0195

воздух 0,918 0,961

СО20,018 0,019 =1

Н2О0,0195 0,020

Теплоемкости смеси газов определим по формулам:

,

,

Температура

определяется из уравнения сгорания. Уравнение сгорания для смешанного цикла: