Министерство образования Российской Федерации
Филиал Санкт-Петербургского государственного морского технического университета
СЕВМАШВТУЗ
Курсовой проект
Дисциплина: “Судовые дизеля”
Тема “Проектирование судового двигателя внутреннего сгорания”
Северодвинск
2006
Исходные данные
Тип судна – сухогруз
Водоизмещение D=2400тонн
Скорость судна u=16 узлов
Степень сжатия e=15
Массовая доля углерода С=84%
Массовая доля водорода H=15%
Массовая доля кислорода О=1%
Введение
Судовая энергетическая установка (СЭУ) предназначена для обеспечения движения судна и снабжения необходимой энергией всех судовых потребителей. От СЭУ существенно зависят экономические показатели транспортного судна, уровень его строительной стоимости и текущих эксплуатационных затрат по содержанию. Затраты на СЭУ в среднем составляют 20...35 % общей строительной стоимости судна и 40...60 % затрат на содержание судна на ходу. Кроме того, основные качества транспортных судов - безопасность плавания, мореходность и провозоспособность - в значительной мере обеспечиваются СЭУ. В связи с этим проектирование СЭУ является одним из важнейших этапов создания судна.
Механизмы и оборудование СЭУ, предназначенные для обеспечения движения судна, составляют главную энергетическую установку (ГЭУ). Основными элементами ГЭУ являются главный двигатель, валопровод и движитель.
Источники электроэнергии с первичными двигателями, преобразователями и передаточными трассами составляют электроэнергетическую установку.
Технические комплексы, обеспечивающие различные судовые нужды (опреснение воды, паровое отопление, кондиционирование воздуха и т.д.), относятся к вспомогательной установке.
Функционирование главной, вспомогательной и электроэнергетической установок обеспечивается различными системами, основными из которых являются топливные, масляные, охлаждения, сжатого воздуха, газоотвода и др.
Эффективное использование ДЭУ, надёжная их эксплуатация и высокая производительность труда обслуживающего персонала обеспечиваются комплексной автоматизацией установки. Автоматизированные ДЭУ с безвахтенным обслуживаем получили широкое распространение на судах морского флота.
1. Выбор главных двигателей и основных параметров
1.1 Определение суммарных мощностей главных двигателей
Примерное значение мощности можно определить при помощи адмиралтейского коэффициента:
кВтГде: D=2400т – водоизмещение судна
u=16 узлов – скорость судна
1/С – обратный адмиралтейский коэффициент
Принимаем СОД фирмы S.E.M.T. с эффективной мощностью Nец =650 э.л.с., числом цилиндров i=6, отношением S/D=1.2, числом оборотов n=520 об/мин
1.2 Выбор основных параметров дизеля
Одна из основных задач проектирования – правильный выбор типа главного двигателя. Исходным данным для этого служит тип и назначение судна, районы плавания, режимы работы установок, условия размещения двигателей, требования к массогабаритным показателям установки, а также требования регистра.
У меня двигатель СОД, может устанавливаться на СДУ и тепловозах, работает на лёгком топливе, тронковый, четырёхтактный, 6 цилиндровый (V-образный).
Мощность дизеля:
По агрегатной мощности (Nе) дизель относится к дизелям мощным (2000-20000) л.с.
Цилиндровая мощность изменяется в широких приделах в зависимости от D, S, n и Pe:
Nец=(Nе)/(i)=3328/6=554.7 л.с. < 650 л.с. (у двигателя)
Частота вращения и средняя скорость поршня:
Главным критерием быстроходности дизеля яв-ся средняя скорость поршня:
Cm=
Зная агрегатную и цилиндрическую мощность, число оборотов, принимаем Ø цилиндра D и ход поршня S.
Выбранные значения D и S, их отношение и средняя скорость поршня Cm должны соответствовать классу проектируемого двигателя:
для СОД
n = 300÷700 об/мин
S/D = 1.0÷1.8
Cm = 7÷10 м/с
Принимаем для СОД при частоте оборотов n =520 об/мин; S=470 мм; D=390 мм
Cm=
м/с.Габариты ДВС:
-Длина двигателя на фундаментной раме:
L=i×a×D=6×1,3×390=3042 мм
Где: I=6 - число цилиндров
а=1.2÷1.4 – для 4-х тактного двигателя.
D=390 мм - диаметр цилиндра,
-Ширина двигателя на фундаментальной раме:
B=b×S=2.2×470=1034 мм.
Где: b=2.1÷2.4- коэффициент для СОД
S=470 мм – ход поршня
-Высота двигателя от оси коленчатого вала до крайней верхней точки:
H1=b1×S=4.8×470=2256 мм.
Где: b1=4.6÷5 - коэффициент для тронковых ДВС
-Расстояние по высоте от оси коленчатого вала до нижней точки:
H2=b2×S=1.5×470=705 мм.
Где: b2=1.25÷2
-Общая высота двигателя:
Hд=H1+H2=2961 мм.
-Масса двигателя через удельную массу:
Gд=gд×Nе=15×2447=36705 кг
Где: gд=10÷20 кг/кВт - удельная масса
-После принятия решения о размере двигателя следует оценить значения среднего эффективного давления:
,Где: z=0,5- коэффициент тактности для четырехтактных дизелей.
Полученное значение Pe сравниваем со значением двигателей и делаем вывод о возможности достижения в проектном решении величины Nе.
2. Тепловой расчёт ДВС
2.1 Теплота сгорания топлива
Низшая теплота сгорания топлива может быть определена по формуле Д.И.Менделеева:
QH=33,9·С+103·Н-10,9· (О-S)– 2,5·W
Полагая С=84%, Н=15%, О2=1%, получим
QН=33,9×0,84+103×0,15-10,9×0,01=43.817 МДж/кг
2.2 Процесс пополнения
-Давление в конце пополнения:
= МПаГде: j=0.6÷0.7- коэффициент скорости истечения.
Т0=293К - температура окружающей среды.
С1 - скорость поступающего заряда через сечения клапана
С1=Сm×k=8.14×7.5=61.05 м/с
к=6÷9 - коэффициент, выражающий отношение площади поршня F к расчётной площади сечения всех полностью открытых впускных клапанов.
Cm=8.14 м/с – средняя скорость поршня
C2=1,57×C1=1,57×61.05=95.85 м/с – наибольшая скорость протекания свежего заряда через выпускной клапан.
-Коэффициент остаточных газов для расчёта четырёхтактного двигателя с наддувом:
=Где: Dt=170C – повышение температуры воздуха вследствие нагрева в системе двигателя.
e=15 – степень сжатия
Тг=800К – температура остаточных газов
Рг=105000 Па – давление остаточных газов
-Температура смеси в конце наполнения:
-Коэффициент наполнения через коэффициент остаточных газов:
2.3 Процесс сжатия
Давление конца сжатия:
МПаГде: n1 =1,38- показатель политропы
Температура конца сжатия:
К2.4 Процесс сгорания
Прежде всего необходимо определить кол-во воздуха, теоретически необходимого для сгорания 1 кг. топлива:
(кмоль/кг)Действительное количество воздуха:
Ms=a×M0=1.8×0.51=0,918 кмоль/кг
Где: a=1.3÷1.8 – коэффициент избытка воздуха при горении
Мольное количество смеси воздуха и остаточных газов, находящихся в цилиндре до горения: M1=(1+gг)×MS =(1+0,036)×0,978=1.005 кмоль/кг
Количество молей продуктов сгорания:
Действительный коэффициент молекулярного изменения:
Мольное количество остаточных газов:
кмоль/кг0.955=0.918+0.0375
СО2:
:0.07+0.075=0.145
Количество СО2:
Х=0,48=48%Н2О:
Х=0,52=52%0.0375=0.018+0.0195
воздух 0,918 0,961
СО20,018 0,019 =1
Н2О0,0195 0,020
Теплоемкости смеси газов определим по формулам:
, ,Температура
определяется из уравнения сгорания. Уравнение сгорания для смешанного цикла: