Смекни!
smekni.com

Аналіз та статистичне моделювання показників використання вантажних вагонів (стр. 2 из 3)

Модель необхідно розраховувати за достатньо великою сукупністю спостережень (п≥40), відібраних випадковим способом.

Щільність зв'язку між результативною ознакою У і чинниками впливу (X,Z тощо) вимірюється множинним коефіцієнтом детермінації R2 і індексом кореляції R, а істотність зв'язку — розрахунковим числом Фішера ФR, яке повинне перевищувати табличне (критичне) значення Фтаб.

Таблиця 2. Вихідна інформація для розрахунку статистичної моделі F„

Y X < V 7. I/Z Y X <) V Z 1/7.
А 1 2 3 4 5 А 1 2 3 4 5
1 2472,0 62.88 31.7 42,14 0,0237 26 4735.0 58,17 39,7 52,29 0,0191
2 2327,0 63,02 31,0 46,58 0.0215 27 6576,0 58,69 40,3 43.36 0,0231
3 2657,0 62.96 31,6 42.80 0,0234 28 7319,0 58,83 41,9 41,00 0,0244
4 3163,0 63,37 32,9 14.12 0,291 29 8184,0 59,09 45.6 36,90 0,0271
5 3349,0 63,79 33,4 32,63 0,0306 30 8986,0 58,56 43,4 32,17 0,0311
6 3578.0 63.11 33.4 29.50 0,0339 31 9970.0 58,29 43,7 27,48 0,0364
7 3761,0 62,77 33,6 27,60 0.0362 32 10419,0 58,26 43,5 23,95 0.0418
8 4011,0 63,21 - 31,7 23.58 0.044 33 3317,0 60,56 31,0 66,65 0,0150
9 3520,0 62,59 31,2 54,74 0,181 34 3658,0 60,63 31,7 56,22 0,0178
10 3786,0 62.75 31.2 52,16 0.019 35 5097,0 59,94 31.5 44.70 0,0224
11 4279,0 62.43 31,4 45,82 0 021 36 6388.0 60.22 33,6 36,05 0,0277
12 4665.0 62,63 32,3 42,08 0,0238 37 6424,0 61,18 33,2 32.21 0,0310
13 5101,0 63.40 33.4 39,16 0,0255 38 7264,0 60,44 34,1 28,11 0.0356
14 5440.0 62,60 32,8 37,12 0.0269 39 7536,0 58,66 34,6 27,23 0,0367
15 6209.0 62.44 34.2 31,81 0,0314 40 8323,0 60,48 35,2 23.75 0,0421
16 6914.0 63,38 34.0 24,89 0,0102 41 2802,0 58,55 28,5 38,44 0,0260
17 2550.0 59,58 32,0 44,69 0,0224 42 2696,0 59,90 26.9 41,74 0,0240
18 2783,0 60.45 33,3 43.22 0,0231 43 5720.0 60,33 27,6 30,77 0,0325
19 4072.0 60,07 34,3 37,53 0,02м 44 4614,0 59.75 29,4 24.63 0,0406
20 5800,0 ці, 34,9 27,90 Oji-^s 45 5292,0 5Х 98 21,25 30,4 0,047 1
21 6326.0 61.14 34,9 26,77 0.0374 46 6110.0 58,81 31,1 20,17 0,0496
22 7296,0 60.72 35,2 25,11 0.0398 47 6792.0 58,43 31,9 18,19 0,0550
23 60.74 35,2 22,81 0,0438 48 7224.0 58,38 32.5 15 58 0,0642
24 8395,0 62,14 34,9 19,36 0,0517 25886 2914,9 163.3, 1691, 1,517.
25 5071.0 57.64 39,9 54,67 0,0183 средня 5393.0 60,728 34,035 35,24 0,0316

Y— середньодобова продуктивність вагона, експл. ткм нетто;

X(qrg)— динамічне навантаження навантаженого вагона, т/ваг;

V— середня дільнична швидкість, км/год;

Z простій вагона під однією вантажною операцією, год;

1/Z — обернена величина Z, в модель закладено гіперболічну

залежність від Y.

В таблиці 3 (допоміжних розрахунків) наведено відповідно:

— квадрати вихідних показників (гр. гр. 1-4);

— добутки Yокремо з кожним факторним показником (гр. гр. 5-7);

— добутки факторних показників між собою попарно (гр. гр. 8-10).

3. Побудова статистичної моделі середньодобової продуктивності вантажного вагона (FW)

Для виявлення кількісного впливу факторних чинників на узагальнюючий (інтегральний) показник використання вантажних вагонів Fw, як відмічено вище, проведено статистичне моделювання (кореляцій-но-регресійний аналіз). Попереднє дослідження статистичних звітних матеріалів усіх залізниць України (вибірка — 48 спостережень, див. таблицю вихідної інформації (табл. 2) довело, що саме ці чинники мають тісний імовірнісний зв'язок з результативною ознакою (Y).

Так, парні коефіцієнти кореляції — r (міра щільності зв'язку) між результативною ознакою Y і факторним чинником Vrw, між Y та 1/Z— rгш= 0,541, між Y і X— від'ємне значення rYX= —0,449 (Y і X функціонально пов'язані). Це досить щільний зв'язок, що свідчить про суттєвий вплив відібраних до складу моделі факторів на середньодобову продуктивність вантажних вагонів.

У той же час, між самими факторами V і 1/Z спостерігається незначний рівень тісноти зв'язку (Z=0,0129), тобто вони не дублюють один одного і не викривлюють величину впливу факторів на результативний показник.

У досліджуваній статистичній моделі середньодобової продуктивності вантажного вагона Fw трьохфакторне рівняння регресії має такий загальний вигляд:

Y= a0+a1X+a2(1/z)+a3V. (4)

Числові значення параметрів цієї моделі 0, а1 а2, а3) визначаються методом найменших квадратів за допомогою системи нормальних рівнянь. Вони повинні задовольняти вимозі найменшої суми квадратів відхилень фактичних значень у від теоретичних значень Y, розрахованих за рівнянням регресії:

∑(Vф-Y)2 =тіп. (5)

Система нормальних рівнянь складається за загальними правилами математичної статистики:

(6)

Для визначення числових значень параметрів рівняння регресії 0, аь а2, а3) у систему нормальних рівнянь (6) підставляються підсумкові дані таблиць вихідних та допоміжних розрахункових даних (табл. 2, 3): Y, X, V, 1/Z — значення першого ступеня (гр. 1, 2, 3, 5 табл. 2), їх квадратів, добутків результативного показника К окремо з кожним фактором та добутків факторних показників між собою попарно (табл. 3):


48а0 +2914,96а1 + 1.5173а2 + 1633.7а3 =258864,0

2914,9 а0+177179.5673 а1+91.96977 а2+ 99065.3 а3= 15637930.18 (7)

1,5173а0+91.9698а1+0.053484а2+ 51.6692 а3=8767.56

1633,7а0+99065.3а1+ 51.6692а2+ 56396.3а3=9096838,6

Розв'язання цієї системи нормальних рівнянь дає такі числові значення параметрів рівняння регресії:

а0= -3663,3565; а1= -94,3096; а2= 101274,5932; а3= 340,3005.

Підставивши ці значення в рівняння (4), отримуємо модель середньодобової продуктивності вагона:

YK1/Z,v= - 3663,36 - 94,31X+101274,59(1/Z)+340,31V. (8)

Параметри отриманого рівняння множинної регресії (8) показують ступінь впливу кожного фактору на досліджуваний показник (Y) при фіксованому (середньому) значенні всіх інших факторів, які входять до складу моделі. За цих умов зі зміною факторної ознаки на одиницю результативна ознака змінюється в середньому на величину параметра (коефіцієнт регресії). Найбільший вплив на зміну Y має дільнична швидкість (пряма залежність), простій вагонів під вантажними операціями (гіперболічна залежність), про що свідчать парні коефіцієнти кореляції rvi та rп та коефіцієнти еластичності Е =

, які показують середній відсоток зміни результативної ознаки у процентах при зміні чинника впливу на 1% при фіксованих значеннях інших факторів даної моделі. Так, для оцінки впливу простою вагона під вантажними операціями розраховуємо коефіцієнт еластичності E1/z: