Смекни!
smekni.com

Принципы проектирования автобусной станции (стр. 2 из 3)

7.2.2 Пластина заземления

Пластина заземления может быть внутренней и внешней. Внутренняя пластина заземления, как правило, устанавливается напротив стены, близко к стативу, на той же высоте, что и статив для кабеля. Внешняя пластина заземления устанавливается на расстоянии 1 метра от наружной стены фидерного отверстия. Пластина внутреннего заземления подключается к заземляющему стержню в нижней части здания при помощи отдельной линии заземления. Пластина внешнего заземления, в свою очередь, подключается к заземляющему стержню с помощью 95мм2 кабеля черного цвета также в нижней части здания.

7.2.3 Кабельрост

Кабельрост может быть внутреннего и наружного исполнения. Его подготавливают до начала монтажа оборудования. Кабельрост внутреннего исполнения подключается к площадке заземления при помощи кабеля, а наружный кабельрост подсоединяется к молниеотводной пластине и фиксируется на антенной мачте. Если окончания кабельроста не обеспечивают хороший электрический контакт, необходимо добавить дополнительные линии для улучшения электрической связи между кабельростами.

7.2.4 Заземляющий провод и заземляющий электрод

Мы предлагаем использовать в качестве заземляющего провода оцинкованный лист или стержень из сортовой стали с диаметром 16—18 мм. С молниеотводом или телом заземления его можно соединить при помощи сварки. Для обеспечения прочности соединения контактный шов должен быть менее 20 см, т.к. ток, проходящий через небольшую контактную область, может вызвать перегрев и нарушить структуру металла. Для всей системы молнезащитного заземления (то есть молниеотвод и тело заземления) с целью предотвращения коррозии, вызываемой электрохимической реакцией в течение продолжительного срока, которая ведет к ухудшению характеристик заземления, предлагается использовать одинаковый металл. Особенно нужно избегать прямого контакта между медью и оцинкованными стальными частями, т.к. это вызывает быструю коррозию контактной области. Заземляющий электрод бывает нескольких типов: стержневого типа (стальная трубка или стальной уголок), которые забиваются в землю вертикально, а также в виде пластины и в виде ленты. Существует также смешанная схема заземления, являющаяся комбинацией вышеперечисленных типов. Стержневой электрод заземления забивается в землю вертикально, и затем соединятся с кабелем. Данный способ лучше, чем предварительное выкапывание отверстия в земле, т.к. разрыхленная земля имеет более высокое сопротивление. Кроме того, заземляющий электрод должен находится как можно ближе к нижней части антенны. Сопротивление заземления складывается из плавающего сопротивления электрода заземления и сопротивления заземляющего провода. Если заземляющий провод имеет не очень большую длину, то его сопротивлением можно пренебречь. Плавающее сопротивление электрода - сопротивление земли и электрода, измеряемое между верхней частью электрода и точкой земли, отстоящей от него на 20 м. Общее сопротивление заземления не должно превышать 5 Ом.

7.3 Требования к электропитанию

Оборудование BTS предъявляет жесткие требования к стабильности, надежности и рабочему диапазону питания переменного тока от которой запитывается источник постоянного тока (первичное электропитание). При проектировании системы электропитания базовой станции необходимо принимать во внимание экономические соображения и характеристики заданной зоны охвата станции. Эти требования особенно важны при проектировании электропитания базовой станции для сети микросотовой структуры.

Во-первых, в микросотовой структуре много базовых станций и, хотя число добавляемых (в случае неверного расчета) к каждой станции блоков питания небольшое, общие инвестиции на всю систему будут достаточны высоки.

Во-вторых, для установки базовых станций обычно выбираются верхние части офисных и жилых зданий. Нагрузка, которую способны выдерживать верхние этажи зданий - относительно невелика, эти соображения ограничивают вес (и соответственно емкость) аккумуляторных батарей. Кроме того, в сети, имеющей микросотовую структуру, как правило, имеется множество перекрывающих друг друга зон обслуживания, и поэтому отказ определенной соты или части каналов базовой станции не оказывает существенного влияния на процесс связи. Исходя из всего вышесказанного, можно резюмировать, что вопрос о совмещении требований к базовой станции и источникам питания решается каждый раз в зависимости от конкретной ситуации и требований данного проекта.

7.4 Установка статива

7.4.1 Конфигурация и расположение статива BTS

(1) Внешние габариты статива:

ширина × глубина × высота = 600×450 ×1 600мм

Функциональные полки: полка базового диапазона и управления, полка электропитания, полка приемопередатчиков, полка CDU. Дополнительно 3 полки вентиляторов и фильтр.

(2) Принцип размещения статива

Согласно принципу конфигурации базовых станций, одна группа базовых станций максимально может состоять из трех комплектов стативов, а каждый комплект включает три статива (один - главный и два статива расширения), т.е. одна базовая станция может включать до 9 стативов. Стативы должны устанавливаться согласно заранее определенной схеме расположения автозала, придерживаясь следующих принципов:

Три статива, представляющие собой один комплект, ставятся вместе.

Что касается расположения относительно друг друга, то их можно ставить в ряд слева направо или лицом друг за другом. В первом случае главный статив ставится в середине, а во втором случае статив устанавливается таким образом, чтобы соединительный кабель от главного статива к обоим вспомогательным имел минимальную длину. В случае установления стативов лицом друг за другом необходимо обеспечить достаточно пространства для открывания дверей. Если позволяют условия автозала, между стативами и стативами и стеной нужно оставить 1 м. Если размеры автозала - ограничены, статив устанавливают прямо у стены. С целью уменьшения длины фидерного кабеля расстояние между стативами и отверстием для антенного фидера должно быть минимальным.

7.4.2 Монтаж статива

Монтаж стативов включает в себя установку стативов, установку плат PSU, PMU, TMU, TEU, TES, TRX и CDU и функциональных модулей, а также вентиляторов, передних и задних дверей. Подробную информацию по монтажу можно найти в "Руководстве по монтажу BTSM900/M1800".

7.5 Установка антенно-фидерной системы

Установка антенно-фидерной системы - это самая трудоемкая часть проекта по установке базовой станции, в целом она занимает около 70% времени от монтажа всей станции. Монтаж включает в себя установку антенны, проводку фидерной линии, установку мачтового усилителя, установку молниеотводной системы и установку соединителей. Для различных условий используются различные виды антенн, которые, в свою очередь, предъявляют различные требования к способам монтажа.

7.5.1 Состав антенно-фидерной системы

Антенно-фидерная система состоит из антенны, главной фидерной линии, соединителей, молниеотвода с держателем, мачтового усилителя и CDU/SCU. CDU устанавливается в стативе BTS, см. главу 2. При полной конфигурации базовой станции, состоящей из 6 несущих частот и всенаправленных антенн, обычно используются 3 комплекта однополярных антенн (по технологии CDU) или 2 комплекта однополярных антенн (по технологии комбинирования SCU и CDU). При использовании направленной антенны с углом захвата 120° базовая станция имеет шесть комплектов антенн, поделенных на три сектора. В каждом секторе -по две антенны, одна для комбинации прием-передача, а другая - для разнесенного приема. Также сектор может содержать один комплект антенны с двойной поляризацией.

Глава 8 Конфигурация и ее типовые примеры

8.1 Обзор по конфигурации

Конфигурация базовой станции - довольна сложна. Мы предлагаем вам краткое описание конфигураций BTSM900/M1800.

8.1.1 Конфигурация ведущего и ведомого стативов

Синхронной сотой называются такие соты, которые работают от одного источника синхронизации. Синхронная сота может быть всенаправленной сотой или группой направленных сот, принадлежащих одной BTS. M900/M1800 может поддерживать конфигурацию сот следующих синхронных типов:

(1) Синхронная всенаправленная сота: 1~18TRX

(2) Две синхронные направленные соты: 1+1~18+18TRX

(3) Три синхронные направленные соты: 1+1+1~18+18+18 TRX

(4) При необходимости может быть сконфигурировано более трех направленных сот.

Максимальная емкость одного статива BTSM900/M1800 - 6 TRX. Количество синхронных сот, для которых требуется свыше 6 TRX можно реализовать, используя несколько стативов. При использовании нескольких стативов, статив, который содержит общее для всех стативов оборудование (OMU, MCK и BIE на полке базового диапазона), называется «ведущим стативом», а остальные - «ведомыми стативами». В синхронной соте может быть только один ведущий статив, а на каждый ведущий статив максимально может устанавливаться по два ведомых статива, то есть общее максимальное число стативов равно трем. Ведущий статив и ведомые стативы совместно используют плату TMU. Сигналы синхронизации, обслуживания, управления и другие, необходимые для функционирования ведомых стативов, передаются от ведущего статива по распределительным линиям. Конфигурация, состоящая из одного ведущего статива или 1 ведущего и 1~2 стативов расширения, называется группой стативов. Один такой статив содержит максимум 18 несущих частот. Если число несущих частот в синхронной соте превышает 18, можно организовать конфигурацию, состоящую из нескольких групп. Группа стативов, в котором ведущий статив обеспечивает источник синхронизации соты, называется "ведущая группа стативов". В ведущей группе ведущий статив конфигурируется 2 платами TMU. Остальные группы стативов называются "ведомые группы стативов". Ведущий статив в ведомой группе конфигурируется 1 или 2 платами TMU. Сигналы синхронизации и техобслуживания передаются по вспомогательным кабелям от ведущего статива ведущей группы к ведущему стативу ведомой группы, а затем от ведущего статива каждой ведомой группы к ведомым стативам данной группы.