По режиму работы и мощности двигателя по таблицам приложения А выбираем электродвигатель серии MTF.
Таблица 2.3 – Основные технические данные выбранного электродвигателя
Тип двигателя | Мощность на валу, кВт | n, об/мин | КПД | Момент инерции,кгм2 | Масса |
4МТН 225L6 | 55 | 960 | 87 | 1,02 | 500 |
Таблица 2.4 – Основные размеры (мм) электродвигателя 4МТН 225L6
Тип двигателя | b1 | b10 | b11 | b12 | d1 | d10 | l1 | l3 | l10 | l11 | l12 | l20 | l28 | l30 |
4МТН 225L6 | 18 | 356 | 435 | 95 | 70 | 19 | 140 | 105 | 356 | 404 | 92 | 1070 | 149 | 1220 |
2.11 Определение расчетной мощности редуктора и его выбор
Редукторы для механизма подъема выбирают, исходя из расчетной мощности или крутящего момента частоты вращения быстроходного вала, передаточного числа редуктора и режима работы. Для горизонтальных
редукторов
(18)где kp – коэффициент, учитывающий условия работы редуктора, для приводов механизмов подъема грузов kp = 1,
При выборе редуктора должно соблюдаться условия, касающиеся прочности, долговечности и кинематики редуктора
Первое условие – расчетная мощность редуктора на быстроходном валу не должна превышать номинальную мощность на быстроходном валу редуктора
(19)Второе условие – передаточное число редуктора не должно отличаться от требуемого передаточного числа более чем на ±15%
(20)Требуемое число редуктора равно
(21)где nдв – частота вращения двигателя, мин-1;
nт – частота вращения барабана, мин-1,
По таблице приложения Б[3] в соответствии с расчетной мощностью, частотой вращения быстроходного вала, режимом работы и передаточным числом выбираем редуктор Ц2 – 400.
Таблица 2.5 – Основные параметры редуктора Ц2
Тип редуктора | Режим работы | Передаточное число | Максимальная мощность на быстроходном валу, кВт | Частота вращения быстроходного вала, об/мин |
Ц2 - 400 | Средний | 12,41 | 81 | 1500 |
Проверяем второе условие
что меньше допускаемых 15%Таблица 2.6 – Размеры редуктора
Типоразмер редуктора | Размеры, мм | |||||||||||||||||||||
А | Аб | АТ | А1 | С1 | Н0 | L1 | q | L | B | H | ||||||||||||
Ц2 - 400 | 400 | 150 | 250 | 287 | 150 | 265 | 640 | 27 | 805 | 380 | 505 | |||||||||||
Ц2 - 400 | 325 | 415 | 358 | 280 | 205 | 33 | 320 | 250 | 6 | 317 |
а) б)
Таблица 2.7 – Геометрические параметры концов валов редуктора Ц2
Типоразмер редуктора | d8 | d9 | d10 | D | l7 | l8 | l9 | l10 | l11 | B3 | d5 | b3 | l3 | l5 |
Ц2 - 400 | 110 | 100 | 140 | 252 | 69 | 30 | 60 | 255 | 65 | 205 | 95 | 28 | 170 | 138 |
2.12 Определение статического момента на валу двигателя при подъеме груза
Момент статического сопротивления на валу двигателя в период пуска при подъеме груза, Нм
(22)где Fmax – усилие в канате, набегающем на барабан, Н;
Z – число полиспастов;
Up – передаточное число редуктора (привода);
КПД барабана, на подшипниках качения КПД привода,2.13 Определение расчетного момента и выбор муфты
По кинематической схеме, представленной на рисунке 1, установлены две муфты. Одна муфта с тормозным шкивом установлена между двигателем и редуктором, вторая соединяет тихоходный вал редуктора с валом барабана.
Расчетный момент для выбора муфты с тормозным шкивом, Нм
(23)где Тмн – номинальный момент муфты, Нм. Принимается равным Тс;
k1 – коэффициент, учитывающий степень ответственности механизма, k1=1,3;
k2 – коэффициент, учитывающий режим работы механизма, по таблице 5.1[3] при среднем режиме k2 = 1,2.
Из таблицы В.3[3] выбирается муфта упругая втулочно-пальцевая с тормозным шкивом.
Рисунок 2.9 – Муфта упругая втулочно-пальцевая и тормозным шкивом
Таблица 2.8 – Основные размеры и параметры втулочно-пальцевых муфт с тормозными шкивами
Номинальный тормозной момент МК, Нм | d(Н7) | d1(Н9) | D | DТ | D1 | D2 | d2 | d3 | d4 | d5 | Число пальцев, n |
мм | |||||||||||
1000 | 60-70 | 50-70 | 220 | 300 | 170 | 275 | 120 | 18 | 36 | М12 | 10 |
Продолжение таблицы 2.8
Номинальный вращающий момент М, Нм | l | l1 | l2 | S | BТ | b | Допустимое смещение валов | Тормозной момент М, Нм | Момент инерции, кгм2 | Масса, кг, не более | |
мм | радиальное | угловое | |||||||||
1000 | 110 | 140 | 107 | 22 | 150 | 1-6 | 0,4 | 1º | 420 | 1,5 | 43 |
2.14 Определение номинального момента на валу двигателя
Номинальный момент на валу двигателя, Нм
(24)где Р – мощность электродвигателя, кВт;
n – число оборотов электродвигателя, мин-1.
2.15 Определение среднего пускового момента
Для двигателя с короткозамкнутым ротором можно принимать
(25)где Тmax – максимальный момент двигателя, Нм.
(26)где
максимальная кратность пускового момента,Принимаем Тср.п. = 820 Нм.
2.16 Определение времени пуска двигателя при подъеме груза
Время пуска при подъеме груза, с
(27)
где Imax – суммарный момент инерции ротора двигателя и муфты, кгм2.
(28)где Ip – момент инерции ротора двигателя, кгм2;
Iм – момент инерции муфты, кгм2.
nдв – частота вращения вала электродвигателя, мин-1;
Vф – фактическая скорость подъема груза, м/с, Vф = 0,71м/с (см пункт 2.18);
КПД механизма,Тср.п. – средний пусковой момент двигателя, Нм;
Тс – момент статического сопротивления на валу двигателя, Нм.
2.17 Определение фактической частоты вращения барабана
Фактическая частота вращения барабана, мин-1
(29)