Смекни!
smekni.com

Разработка оборудования для уплотнения балластной призмы (стр. 4 из 14)

,(2.28)

где φ - фаза вынужденных колебаний по отношению к фазе возмущающей силы, град; Fв – максимальная вынуждающая сила, Н (Fв=90·103Н).

,(2.29)

где h – коэффициент демпфирования, с-1 (h = 7,2 с-1); ω0 – частота свободных колебаний плиты с учётом жёсткости балласта, с-10=55,26 с-1).

По формуле (2.28) находится:

.

Мощность

находится по формуле:

,(2.30)

где P0 – мощность, необходимая для преодоления диссипативных сопротивлений вращению, Вт.

Р0 =0,5·Fв · dв·ω·fn, (2.31)

где fn – приведённый коэффицент трения в подшипниках дебелансного вала, fn = 0,001 ( [3] стр.148).

P0 = 0,5·90·103·0,04·188,4·0,001 = 339,12 Вт

Находится PВМ :

PВМ = 0,02 · P0 , (2.32)

PВМ = 0,02 · 339,12 = 6,7 Вт

Находим Р33 по формуле:

,(2.33)

где ηз – КПД зубчатой передачи синхронизатора (ηз = 0,96 – [2] стр. 23); m – количество зубчатых зацеплений (m=4).

Pзз= (4246 +339,12) · (1 – 0,964) = 690,7 Вт.

Тогда:

Pвс’= 339,12 + 6,7 + 690,7 = 1036,8 Вт.

В итоге суммарные затраты мощности равны:

Pв = 1036,6 + 4246 = 5282,3 Вт.

В некоторые моменты работы виброплиты могут возникнуть ситуации, такие как совпадение фазы вынужденных колебаний с фазой возмущающей силы.

Максимально возможные значения Рб возможно при sin2 φ0 =1:

.

Максимально возможные потери мощности в зубчатом зацеплении:

P33max= (25570+339,12)(1-0,964) = 3801,1 Вт.

Тогда мощность PВСmax:

PВСmax = 339,12 + 6,7 + 3801,1 = 4146,9 Вт.

В итоге максимально возможная мощность, затрачиваемая на виброподбивку шпал равна:

Pвmax = 25570 + 4146,9 = 29716,9 Вт.

Для того чтобы учесть возрастание сопротивления на виброподбивку шпал, при попадании плиты в резонанс, при выборе двигателя возьмём среднее значение мощности Pвср:

Pвср = (5282,6 +29716,9)/2 =17499,7 Вт ≈17,5 кВт.

Потребная мощность двигателя вибровозбудителя подбивочной плиты, кВт:

Pвср = Pвср / ηn,(2.34)

где ηn – КПД передачи от двигателя до ведущего вала вибровозбудителя (ηn= 0,98).

Pдв = 17,5/0,98 =17,85 кВт.

Выбирается асинхронный двигатель с фазным ротором ([2] стр.27) таблица 2.1:

Таблица 2.1 – Характеристики асинхронного двигателя 4А160М2У3

Типоразмер Мощность PH, кВт Синхр. частота вращения, об/мин Скольжение, % nH, oб/мин Тmax/ Тном
4А160М2У3 18,5 1500 2,2 1467 1,4

Находится крутящий момент на валу двигателя, H·м:

Тmax= 9550 · PH/ nH ;(2.35)

Тmax= 9550 · 18,5/ 1467= 120,43 H·м.

Учитывая разность частоты вращения валов дебалансов и частоты вращения вала двигателя устанавливается дополнительный вал с зубчатым колесом повышающим частоту вращения вала дебаланса (рисунок 2.7).

Для передачи крутящего момента от вала двигателя к ведущему валу дебалансов устанавливается карданный вал от ГАЗ – 53 [8], который рассчитан на Pmax = 84,6 кВт ; Тmax = 284,4 H·м ; n = 2000 об/мин.


1 – двигатель; 2 – карданный вал; 3 – ускоряющее зубчатое колесо; 4 – дебаланс; 5 – синхронизирующие зубчатые шестерни.

Рисунок 2.7 – Привод виброплиты

2.3 Расчёт цилиндрической зубчатой передачи внешнего зацепления

Исходные данные:

Максимальный крутящий момент на тихоходном валу ТmaxI = 120,43 H·м

Частота вращения ведущего (ведомого) вала nII = 1800 об/мин

Частота вращения ведомого (ведущего) вала nI = 1467 об/мин

Материал шестерни ст 40Х У

Материал колесаст 40Х ТВ4

Передаточное отношение:

u21 = nII/ nI =1800/1467 =1,22.

I – тихоходный вал; 1 – зубчатое колесо; II – быстроходный вал; 2 – шестерня.

Рисунок 2.8 – Зубчатая передача внешнего зацепления

Расчёт произведён на ЭВМ (программа ДМ – 1).

2.3.1 Алгоритм расчёта зубчатой передачи (силовой расчёт).

1) Определяется по контактным напряжениям межосевое расстояние aWв мм по формуле :

, (2.35)

где u– передаточное число рассчитываемой передачи (u = 1,22); K1 – вспомогательный численный коэффициент (K1 = 315 [2]); [σH] – допускаемое контактное напряжение, МПа; Т1 – крутящий момент на валу колеса, H·мм; KНα – коэффициент распределения нагрузки (KНα = 1 [2]); KНβ – коэффициент концентрации нагрузки ( [2] ст 92) ;KНV – коэффициент динамичности [2]; KНД – коэффициент долговечности лимитирующего колеса [2]; Ψa – коэффициент ширины венца, принимается из единого ряда [2 стр. 52] (Ψa = 0,2 …0,4); KХ – коэффициент, учитывающий смещение.

2) Ширина колеса в мм:

b2 = Ψa·aW.(2.36)

3) Модуль зацепления m в мм из расчёта на изгиб ориентировочно определяется по формуле:

,(2.37)

где K2 – численный коэффициент (для прямозубых колёс K2 = 5); KFα , K , KFv ,KFД – коэффициенты, аналогичные KНα , KНβ , KНV, KНД определяются по [2]; [σF] – допускаемое изгибное напряжение лимитирующего колеса, МПа ([2] стр. 91).

4) Расчёты по формулам (2.35)…(2.36) составляют программу ДМ – 1. Машина выдаёт на печать исходные данные и величины aW ,b2 и m в миллиметрах. Полученные данные подлежат обработке.

Значения aW и b2 выбираются из единого ряда ([2], ст 51). Допускается их округление по ГОСТ 6636 – 69 ([2] ст 296). Модуль округляется в большую сторону.

2.3.2 Алгоритм геометрического и проверочного расчёта зубчатой передачи

Определение чисел зубьев:

1) Суммарное число зубьев ZΣ:

ZΣ = 2·aW·cosβ / m ,(2.38)

где β – угол наклона линии зуба.

Величина ZΣ округляется до ближайшего целого числа.

2) Число зубьев шестерни Z1 :

Z1 = ZΣ / (u + 1).(2.39)

3) Число зубьев колеса Z2:

Z2 = ZΣ – Z1.(2.40)

4) Окружная скорость колёс v, м/с:

.(2.41)

5) Уточнённое передаточное число u 21:

u 21 = Z2 /Z1.(2.42)

6) Ширина шестерни b2, мм:

b2 = 1,1 b2.(2.43)

7) Межосевое расстояние, мм:

aW = 0,5·m(Z1 + Z2) + (Х1 + X2 – Δy)m ,(2.44)

где Х1 , X2 – коэффициенты смещения (Х1 = X2=0 [2]); Δy – коэффициент уравнительного смещения (Δy = 0 [2]).

8) Угол наклона линии зуба для прямозубых колёс β = 0.

9) Делительные диаметры d, мм:

d = m·z / cosβ.(2.45)

10) Диаметр вершин da, мм:

da = d + (2 + 2x– 2Δy)m.(2.46)

11) Диаметр впадин df , мм:

df = d – (2,5 – 2x)m.(2.47)

12) Окружная толщина зубьев по делительной окружности St, мм:

St = (π/(2cos β) + 2x·tgα)m.(2.48)


13) Угол зацепления αW:

,(2.49)

где α – угол профиля (α = 20˚).

14) Торцевой коэффициент перекрытия εα:

.(2.50)

15) Коэффициент суммарной длины контактных линий Zε:

.(2.51)

16) Угол наклона линии зуба по основной окружности βв:

.(2.52)

17) Коэффициенты формы сопряжённых поверхностей зубьев в полосе зацепления Zн:

.(2.53)

18) Рабочее контактное напряжение σн, мПа:

,(2.53)

где

- коэффициент, учитывающий механические свойства материалов сопрягаемых поверхностей (
= 275) [14].

19) Отклонение рабочего контактного напряжения от допускаемого ∆σн, %:

.(2.54)

20) Окружное усилие Ft, H:

,(2.55)

где

- начальный диаметр колеса, мм.

,(2.56)

где

- начальный диаметр шестерни, мм.

.(2.57)

21) Радиальное усилие Fy, H:

. (2.58)