Смекни!
smekni.com

Модернизация подвески автомобиля ЗАЗ1102 Таврия (стр. 9 из 15)

Тормозную силу LА следует считать действующей на расстоянии:

аb = Roсоs δo sin δo

над поверхностью дороги при и над ней – при отрицательном плече обкатки.

Рис. 5.8. Силы возникающие в стойке при торможении

Рассматривая силы относительно оси Z и точки А:

Σ МОZА : NV о · b + Вy5 (c + o) sin δo – Bx5 (c + o) cos δo = 0;

b = Ro ст + d tg δo + (c + o) sin δo; Bx5 = By5 ctg β NV ′ (Ro ст + dotg δo + (c + o) sin δo + By (c + o) sin δo – By (c + o) cos δo ctg β = 0;

Bx5 = By5 ctg β = 94·15,97 = 1501,1 Н

Сумма моментов относительно оси Х и точки А:

Σ МОХА : NVо · е + Вy5 · t – BZ5 (c + o) cos δo – Lb [(с + о) cos δo + d – аb] = 0;

где t = (с + о) cos δo tg ε = 0,612∙0,9659∙0,0524 = 0,031;

е = [(с +о) cos δo + dо – rст] tgε = (0,612∙0,9659+0,18–0,272)∙0,0524=0,0262.

аb =Ro стcosδosinδo = 0,005∙0,9659∙0,2588 =0,00125м.

Силы в точке А:

Ах5 - Вх5 = 0; - Аy5 + Вy5 + NVо = 0; Аz5 - Вz5 - Lb = 0;

Ах5 = Вх5; Аy5 = Вy5 + NVо; Аz5 = Вz5 + Lb;

Ах5 = 1501,1 Н Аy5 = 94 + 4327,5; Аz5 = -4500 +3606,25;

Аy5 = 4421,5 Н Аz5 = -893,75 Н.

Раскладываем силы на составляющие:

Ауu = Ay5 · sin υ = 4421,5 · 0,1484 = 656,15 Н.

Ayv = Ay5 · cos υ = 4421,5 · 0,9889 = 4372,42 Н.

Axs = Ax5 · sin æ = 1501,1 · 0,937 = 1406,53 Н.

Axt = Ax5 · cos æ = 1501,1 · 0,3494 = 524,48 Н.

Azs = Az5 · cos æ = - 893,75 · 0,3494 = - 312,28 Н.

Azt = Az5 · sin æ = - 893,75 · 0,937 = - 837,44 Н.

As = Azs + Axs = - 312,28 + 1406,53 = 1094,25 Н.

At = Axt – Azt = 524,48 – (- 837,44) = 1362,27 Н.

Asu = As · cos υ = 1094,25 · 0,9889 = 1082,06 Н.

Asv = As · sin υ = 1094,25 · 0,1484 = 162,38 Н.

F1 = Ayv + Asv = 4372,42 + 162,38 = 4534,8 Н.

Au = Asu – Ayu = 1082,06 – 656,15 = 425,91 Н.

Осуществляем проверку разложения сил:

√Ах5² + Ау5² + Аz5² = √Au² + At² + F1² ;

√1501,1² + 4421,5² + (- 893,75)² = √425,91² +1362,27² + 4534,8² ;

4754,13≈4754,11

Aquer = √Au² + At² = √425,91² + 1362,27² = 1427,3 Н.

Сила в направляющей втулке штока амортизатора:

С5 = Аquer · ℓ′ / (ℓ′ – о′) = 1427,3 ∙ 0,347 / (0,347 – 0,136) = 2347,27 Н

Сила, действующая на поршень:

К5 = С5 – Аquer = 2347,27 – 1427,3 = 919,97 Н

Изгибающий момент в штоке амортизаторной стойки:

Мк5 = Аquer · о′ = 1427,3 · 0,136 = 194,11 Н м;

Т. к. изгибающий момент для этого случая меньше момента для случая движения по разбитой дороге (Мк5 < Мк3), то заведомо можно сказать, что условие прочности для данного случая выполняется.

По-прежнему фиксируем пока минимальный диаметр штока dmin = 20 мм.

5.3.4 Силы, возникающие в подвеске при

преодолении железнодорожного переезда

При расчете максимальных вертикальных нагрузок следует установить колесо в крайнее верхнее положение, сместив его на величину хода f1 (рис. 5.9). Это необходимо для определения изменившихся углов (с индексом 2) ε2 δ2, β2, а также изменившегося плеча обкатки Ro2. При расчете на прочность используется положение автомобиля при допустимой полной загрузке. Используем действующие в пятне контакта силы:

NV 2 = NV 2 – (U2 / 2) и S1 = µF1 NV.

NV2 = 2,6∙2885 – 288,5 = 7212,5 Н.

S1 = 981 Н.


Рис. 5.9 Изменение положения рычага при преодолении железнодорожного переезда

Определяем угол β2:

sin β = a / Lp; sin β2 = b / Lp;

b = 65 – а = 65 - Lр sin β;

β2 = 8°08′.

Угол δ2 определяем графически через соотношение изменившегося расстояния между точками А и В и его проекцией на ось ОУ:
соs δ2 = 0,528 / 0,551 = 0,9583; δ2 ≈ 16°36′.

При ходе сжатия подвески существующее расстояние о (между направляющей с и точкой А в крыле) уменьшается до:

о′2 = о′ - f1 / ix = 0,136 – 0,065 / 1,0112 = 0,072 м.

Изменившийся угол ε2:

ε2 ≈ 3°22′.

Изменившееся плечо обкатки:

Ro2 = - d tg δ2 + к = -0,203∙0,2934 + 0,025 = -0,035 м;

где к = 0,025 м.

аL2 = Ro2 · sin δ2√(1 + tg²ε2) (1 + tg²ε2 + tg² δ2) + rдsin (δ2 + γ2) sin δ2 ;

гдеγ2 = δ2 – δо= 16º36′ – 15° = 1°36′

nS2 = rд sin²ε2 = 0,282 · 0,0587² = 0,001 м

По приведенному на рис. 5.10 виду сзади, используя зависимость Вх2 = Ву2 сtg β2, составляем уравнение моментов относительно оси ОZ и точки А:

Рис. 5.10 Виды сбоку (а) и сзади (б).

Bx2= Ву2 сtg β2 = 453,71 · 8,105 = 3677,32 Н.

Сумма моментов относительно оси ОХ и точки А:

Σ МОХА : NV2 · е2+LA1[(с+о)cosδo– f1 + d – (rд – aL2)] – By2 · f2 – Bz2·[(с + о)cos δo – – f1] = 0;

Где е2=[(с+о)cosδo–f1+d–rд]tgε2=(0,612∙0,9659–0,065+0,203–0,282)∙0,0588=0,0263;

f2 = [(с + о)cosδo– f1] tg ε2=(0,612∙0,9659–0,065)∙0,0588= 0,031.

В точке А действуют взаимно перпендикулярные силы:

- Ах2 + Вх2 - S1= 0; - Аy2 + NV2 - Вy2 = 0; - Аz2 + Вz2 - LА1 = 0;

Ах2 = Вх2 - S1; Аy2 = NV2 - Вy2; Аz2 = Вz2 – LА1;

Ах2 = 3677,32 – 981; Аy2 = 7212,5 – 453,71; Аz2 = 643,08 – 352,8;

Ах2 = 2696,32 НАy2 = 6758,79 Н Аz2 = 290,28 Н

Раскладываем эти силы в направлении оси амортизатора и перпендикулярно ей аналогично предшествующим случаям.

Определяем пространственный угол υ2:

tg υ2 = √tg² (δ2 – α) + tg² ε2

tg υ2 = √tg² 8°21′ + tg² 3°22′ = √0,1468² + 0,0588² = 0,15814.

υ ≈ 8°59′.

Определяем пространственный угол æ2:

tg æ2 = tg (δ2 – α) / tg ε2 = 0,1468 / 0,0588 = 2,4966

æ = 68°10′.

Аyu = Аy2 · sin υ2 = 6758,79 · 0,1561 = 1055,05 Н

Аyv = Аy2 · cos υ2 = 6758,79 · 0,9877 = 6675,66 Н.

Ахs = Ах2 · sin æ2 = 2696,32 · 0,9283 = 2503 Н

Ахt = Ах2 · cos æ2 = 2696,32 · 0,3719 = 1002,76 Н

Аzs = Аz2 · cos æ2 = 290,28 · 0,3719 = 107,96 Н

Аzt = Аz2 · sin æ2 = 290,28 · 0,9283 = 269,47 Н

Аs = Аzs + Ахs = 107,96 + 2503 = 2610,96 Н

Аt = Ахt – Аzt = 1002,76 – 269,47 = 733,29 Н

Asu = As · cos υ2 = 2610,96 · 0,9877 = 2578,85 Н.

Asv = As · sin υ2 = 2610,96 · 0,1561 = 407,57 Н.

F1 = Ayv + Asv = 6675,66 + 407,57 = 7083,23 Н.

Au = Asu – Ayu = 2578,85 – 1055,05 = 1523,8 Н.

Осуществляем проверку разложения сил:

√Ах2² + Ау2² + Аz2² = √Au² + At² + F1² ;

√2696,32² + 6758,79² + 290,28² = √1523,8² + 733,29² + 7083,23² ;

7282,56 ≈ 7282,3.

Aquer = √Au² + At² = √1523,8² + 733,29² = 1691,06 Н.

Сила в направляющей втулке амортиизаторной стойки:

с2 = Aquer ℓ′ / (ℓ′2 - о′2) = 1691,06 · 0,347 / (0,347 – 0,072) = 2133,81 Н.

Сила, действующая на поршень:

К2 = с2 - Aquer = 2133,81 – 1691,06 = 442,75 Н.

Изгибающий момент в штоке амортизатора:

Мк2 = Aquer · о′2 = 1691,06 · 0,072 = 121,76 Н м.

Т. к. изгибающий момент для этого случая меньше моментов прочности для случая максимальной вертикальной нагрузки выполняется.

Минимальный диаметр штока dmin = 20 мм.

5.3.5 Силы, действующие при полном ходе отбоя колеса

Чтобы учесть все напряжения изгиба в штоке амортизатора, следует рассматривать действия боковых сил от поперечных составляющих неровностей дороги при крайнем нижнем положении колеса (рис. 5.11). При этом ограничитель хода отбоя, закрепленный на штоке амортизатора, упирается в направляющую втулку штока в зоне точки С.

Определяем угол β4:

Рис. 5.11 Изменение положения рычага при полном ходе отбоя

; β4=19º

Определение углов наклона оси поворота δ4 и развала колеса γ4.

В этом случае не будем пренебрегать изменением угла α между осью поворота и осью амортизатора, как это было сделано в случае максимальной вертикальной нагрузки (случай 2 п.5.3.4) из-за ничтожного его изменения в сравнении с изменением угла δo → δ2. Так как очень сложно учесть все факторы, влияющие на изменение развала γ, то единственными критериями оценки изменения угла α можно считать кратчайшее расстояние от центра шаровой опоры до оси амортизатора и угол δo – α = 8° между осью колеса и осью амортизатора, которые неизменны при любом положении подвески.