Рис. 4.1 Схема обозначения основных размерных параметров
(а) – вид сбоку (б) – вид сзади
В качестве расчетной принят тип подвески изображенный на рис. 4 со следующими конструктивные параметры подвески (рис. 4.1, а, б):
· Угол поперечного наклона оси поворота δo = 15º позволяет сместить несущий шарнир b в пространство колеса и получить отрицательное плечо обкатки, а также укоротить отрезок b.
· Угол продольного наклона оси поворота ε = 3º обеспечивает возврат управляемых колес в нейтральное положение при повороте. Значение последнего угла обеспечивает благоприятное расположение центра продольного крена и связанную с этим 20%-ную компенсацию продольного крена при торможении.
· Угол α = 7° смещения оси амортизатора относительно оси поворота также способствует созданию отрицательного плеча обкатки.
· Плечо обкатки Ro ст = -5 мм позволяет уменьшить плечо действия вертикальных нагрузок, тормозных и тяговых сил на амортизаторную стойку, улучшить динамику и кинематику подвески и ее компактность.
· Расстояние dо = 0,18 м (180 мм) от поверхности дороги до центра шаровой опоры колеса, принимается при статическом положении автомобиля и максимально допустимой нагрузке.
· Угол наклона поперечного рычага β = 3º35′ принимается с учетом, что в движении при незначительных колебаниях подвески автомобиля на ровной дороге он (автомобиль) будет занимать наиболее устойчивое положение при колее передних колёс 1314 мм.
· Высота подвески от поверхности дороги до точки крепления штока амортизатора в крыле автомобиля при номинальной нагрузке на ось принимается равной Нⁿст = 771 мм (без нагрузки Нⁿст = 800 мм.)
· Расстояние (с + о), характеризующее длину амортизаторной стойки при статическом номинальном нагружении автомобиля принимается равной 612 мм.
· Длина рычага ВД принимается равной Lр=325 мм, это позволяет уменьшить зависимость изменения развала от хода колеса при более коротких рычагах, а также добиться относительно большого хода подвески S = 150 мм (рис. 4.2).
85 |
96 |
75 |
38 |
80 |
65 |
460 |
347 |
а) При номинальном статическом положении. |
196 |
75 |
38 |
150 |
96 |
520 |
347 |
80 |
б) При полном ходе отбоя. |
38 |
65 |
100 |
75 |
96 |
420 |
в) При полном ходе сжатия. Рис. 4.2 Предварительное разбиение размеров. |
Рис. 4.4 Пространственная система сил (ПСС) действующих в т. А крепления штока амортизатора в крыле автомобиля | Рис. 5.2. Вид пространственной системы сил на плоскость АЕК (ось амортизатора совпадает с линией АК). |
Силу Аsследует далее разложить на составляющие в направлениях U и V (рис. 4.7).
ASU = As cos υ = 885,26 · 0,9889 = 875,43 H
ASV = As sin υ = 885,26 · 0,1484 = 131,37 H.
Силы AYV и ASV совместно определяют нагрузку на пружину:
F1=AYV+ ASV =2623,45+131,37 =2754,82 Н.
Вторая составляющая ASU, также перпендикулярна к прямой АВ, как и AYU, приложена к штоку поршня. Чтобы иметь возможность определить напряжение изгиба, на основе двух сил с учетом силы Аt, действующей под углом 90° к ним, следует найти поперечную составляющую
AU = ASU – AYU = 875,43 – 393,69 = 481,74 Н.
Aguer = √Au² + At² = √481,74² + 20
3,98² = 523,15 Н .
Рис. 4.3. Видсверху на ПСС | Рис. 4.7 Разложение сил в направлении осей V и U |
Осуществляем проверку найденных сил:
√AX² + AY² + AZ² = √Fω² + AU² + At² ;
√900,71² + 2652,9² +118,17² = √2754,82² + 481,74² + 203,98² ;
2804,12 ≈ 2804,05.
Рис. 4.8 Силы изгибающие шток амортизатора
Изгибающий момент в штоке амортизатора:
МК = Aguer · 0′ = 523,15 · 0,136 = 71,15 Нм.
Сила в направляющей втулке штока амортизаторной стойки С=
.Сила, действующая на поршень,
К = С - Aguer=860,35–523,15=337,2 Н.