Рис. 6.3 График изменения жесткости подвески в зависимости от хода колеса.
Жесткость при номинальной нагрузке на одно колесо С1=19,576 [H/mm]
Частота колебаний ω=8,6 рад/с.
Рис 6.4 Конструкция и желаемая характеристика
ограничителя хода сжатия.
Рис 6.5 Конструкция и желаемая характеристика
ограничителя хода отбоя.
7 Расчет и проектирование стального упругого элемента
7.1 Пружинные (рессорные) стали и их свойства
В ГОСТ нормированы стали для автомобильных пружин и рессор, изготавливаемых горячим формообразованием. Винтовые пружины выполняются преимущественно из стальной проволоки классов I, II, IIa, III по ГОСТ 9389-75, а также из проволоки по ГОСТ 14963-78. В табл. 43 [8] приведены выдержки из стандарта ГОСТ 14959–69 для наиболее распространенных марок сталей. Марки сталей разбиты на группы в зависимости от прочности, что позволяет лучше видеть зависимость между временным сопротивлением, пределом текучести и удлинением. Добавка в качестве регулирующего элемента хрома или марганца улучшает прокаливаемость стали. Именно поэтому при большой толщине листов или при большем диаметре торсионов могут использоваться стали марок 50ХСА, 60С2Н2А, 60СГА и т.п.
В штампе чертежа указывается временное сопротивление, которое материал рессоры или пружины должен иметь после обработки с учетом поля допуска. Буква А после марки стали, означает, что сталь высококачественная, поэтому надпись в штампе чертежа будет иметь вид:
60С2А
σв =1500÷1600 Мпа.
Однако при расчете упругих элементов используется не временное сопротивление (σв), а напряжения, которые может выдержать материал при данном типе нагружения, т.е. при изгибе или кручении. Эти величины считаются допускаемыми верхними напряжениями, являясь функцией также указанных в табл. 22.4 [1] значений текучести σт. Уравнения для расчета допускаемых напряжений с учетом запаса прочности n и коэффициента b0 (который учитывает уменьшение прочности при толщине свыше 10 mm рис 2.10.6 [1]) будут иметь вид:
σв доп0»1,2 σт b0/n;
ttдоп0»0,63 σт b0/n.
Для пружинных сталей предел текучести при кручении составляет около tt=0,63 σт в отличие от углеродистых улучшаемых сталей по стандарту ДИН 17200, для которых tt=0,58 σт.
Для создания легких конструкций при достаточно полном использовании возможностей материала следует принимать запас прочности на уровне всего n=1,05…1,1. Превышение напряжений при проседании пружин и уменьшении высоты кузова практически невозможно в связи с наличием ограничителей хода.
Круглые прутки, используемые для изготовления винтовых пружин и торсионов, шлифуются, что обеспечивает высокую точность (допуск h9 по стандарту ИСО) и гладкую металлическую поверхность без концентраторов напряжения с высотой микронеровностей Rt£15 мкм. Перед завершающей операцией нанесения ударопрочного антикоррозионного покрытия осуществляется дробеструйная обработка готовой пружины, что позволяет устранить последние имеющиеся концентраторы напряжений и обеспечить требуемое сопротивление усталости. При использовании высококачественной стали допускаемые напряжения ttA могут быть рассчитаны по формуле:
ttA=ttw–0,159 ttm.
Предположив, что при пробое подвески напряжения в упругом элементе достигают предела текучести при кручении, вместо ttm подставляем ttF-ttA. В соответствии с табл. 1.1. [1] при знакопеременных нагрузках предел прочности при кручении ttw»0,29db. Используя характерную для пружинных сталей величину ttF»0,63dS, а также отношение предела текучести к временному сопротивлению g=dS/db»0,92, получаем:
ttA=ttw–0,159(ttF–ttA) »0,29 σв –0,159(0,63∙0,92∙ σв –ttA)»0,24 σв.
Кроме того, в расчет должны войти: запас прочности для защиты от поломок при усталости металла n=1,1, коэффициент уменьшения напряжений b1, который учитывает снижение прочности при диаметре более 10 мм. Для винтовых пружин дополнительно учитывается коэффициент k. В окончательной форме уравнение имеет следующий вид:
ttдопА»0,24 σв minb1/(nk).
Для определения прочности в него следует ввести минимальное значение указанного на чертеже поля допуска. При работе подвески редко используется весь ее ход. Преднамеренно учитывая при расчетах на прочность только часть зоны допускаемых нагрузок, принимают во внимание 90% хода подвески. Без этого пружины были бы слишком тяжелыми и неоправданно дорогими, что учитывается коэффициентом 0,9.
7.2 Расчет винтовой пружины
Винтовую пружину можно рассматривать как цилиндрический торсионный стержень, навитый на сердечник диаметром D1. в процессе навивки проволока будет деформирована, в результате чего на внутренней (сжатой) стороне будут иметь место более высокие напряжения кручения. Величина этих напряжений, обозначенных ti, зависит от индекса пружины w=Dm/d, т.е. от отношения диаметра навивки к диаметру проволоки. С помощью коэффициента k, учитывающего влияние кривизны витка и приведенного на рис. 2.123. [1], можно рассчитать ti как функцию допускаемых верхних значений напряжений.
ti=ttдon0/k.
Чем меньше Dm и, следовательно, индекс пружины w, тем большие значения будет принимать коэффициент k. В результате: напряжения, которые может выдержать пружина, будут снижены, а использование материала ухудшается. Кроме того, для пружины с малым диаметром Dm существует опасность потери устойчивости под нагрузкой. По этим причинам целесообразно предусматривать максимально возможный диаметр навивки.
Рис 7.1 При навивке спиральных пружин на внутренней (сжатой) стороне возникают повышенные напряжения кручения. А – зона повышенных напряжений.
ix – передаточное отношение по ходу;
iy – передаточное отношение по силам;
n0,1 – число пружинных витков (индекс 0 означает расчетное число, индекс 1фактическое);
n1 – общее число витков;
k – коэффициент уменьшения, учитывающий изгиб проволоки;
L0 – длина пружины без нагрузки, мм;
Lw - длина пружины под воздействием начальной нагрузки Fw, мм;
Lb1 – длина пружины при полной нагрузке (длина блока при плотном
прилегании всех витков), мм;
Ln – наименьшая рабочая длина;
Sa – сумма наименьших расстояний между пружинящими витками (зазор),мм;
w - степень навивки, w=Dm/d;
l - коэффициент гибкости пружины;
ti – допустимые напряжения сдвига с учетом изгиба проволоки, МПа.
Чтобы по среднему диаметру навивки Dm определить индекс пружины w и коэффициент k, следует вначале задаться диаметром d. ориентировочно, предположив, что d»1,4 см=14 мм и Dm=160 мм, определяем коэффициент k:
k=1+5/4∙d/Dm+7/8∙(d/Dm)2+( d/Dm)3;
k=1,1167,
что равноценно уменьшению на 11,67% напряжений, которые может выдержать пружина.
Степень навивки:
ω= Dm⁄d = 160 ⁄14 = 11,43.
В качестве материала, при диаметре проволоки меньше 40 мм в соответствии с табл. 2.4 [1], рассматривается сталь 60С2А [8, табл. 43]в группе прочности ІІ. При этом на чертеже должны быть указаны следующие характеристики: σв=1570 Мпа и σт³1373 Мпа.
Используя запас прочности n=1,1 и определяя по рис. 2.106 [1] значение величины b0=0,94 как функцию d=0,14 мм, получаем допускаемые максимальные напряжения:
ttдоп0»0,63 σт ∙b0/n»0,63∙1373∙0,94/1,1=739,17 Мпа.
При k=1,1167 идеальные касательные напряжения:
ti=ttдоп0/k=739,17/1,1167=661,92 Мпа.
Допустимые амплитудные напряжения определяются как функция максимального временного сопротивления при n=1,1 и b1=0,95 (рис. 1.13 [1]), а также с учетом k=1,1167:
ttдопА»0,24 σв ∙b1/(n∙k)=0,24∙1570∙0,95/(1,1∙1,1167)=291,41 Мпа.
Вначале рассчитываются силы, действующие на пружину, и ее перемещения и, кроме того, жесткость CF. Затем по этим величинам определяем относительные величины y1 и y2:
Fw=N¢V∙iy= 2596,5∙1,061 = 2754,89 H .
f1F=f1/ix=65/1,0112=64,28мм;
f2F=f2/ix=85/1,0112=84,06 мм;
F1=f1F∙CF= 64,28∙20 = 1285,6 H,
где CF=с1∙ix∙iy= 19,576∙1,0112∙1,061 = 20 Н/мм;
Fmax=Fw+F1= 2754,89+1285,6= 4040,49 H.
FA=[(f1F+f2F)∙0,9/2]CF=[(64,28+84,06)∙0,9/2]∙20=1335,06 H.
y2=FA/ttдопA=1335,06 /291,41 = 0,045814 см2;
y1=Fmax/ti=4040,49/661,92 = 0,061042 см2.
Определяем минимальный диаметр проволоки с использованием большей из величин (в данном случае y1).
В результате расчета диаметр проволоки dmin оказался меньшим, чем диаметр, который был использован при первоначальном расчете dmin=1,4 см. Коэффициенты уменьшения допускаемых нагрузок b0 и b1, определяемые диаметром, будут поэтому больше принятых при расчете, а коэффициент k, зависящий от кривизны витка, будет меньше. Идеальные напряжения среза будут больше и поэтому не требуется проведения повторного расчета.
С учетом допускаемых отклонений размеров (допуски на рис. 2.118 [1]) следует определить средний диаметр проволоки, который будет использован при дальнейших расчетах и является исходным для изготовления проволоки. При диаметре проволоки меньше 20 мм допускаемые отклонения равны ±0,08 мм, поэтому диаметр d с учетом поля допуска равен 14,08±0,08 мм. Следовательно, индекс пружины, необходимый в дальнейшем расчете, составляет w=11,36. Используя величину d, выраженную в см, определяем число рабочих витков: