4.1 Выбор основных параметров сцепления
С учетом данных ОСТ 37.001.463-87 по максимальному моменту двигателя Memax= 190 Н×м предварительно выбираем сцепление. В соответствии с определением с внешним диаметром сцепления и ГОСТом 1786-95 устанавливаем размеры накладок: Dн = 250 мм; Dв = 155 мм; толщина накладки = 4,0 мм.
4.2 Расчет сцепления на износ
Требуемое нажимное усилие на поверхностях трения вычисляется по формуле
где b - коэффициент запаса сцепления, принимаем b = 1,8;
m - коэффициент трения, принимаем m = 0,3;
i – число поверхностей трения, у однодискового сцепления i = 2
Удельное давление на фрикционные накладки
Величина q оказывает существенное влияние на интенсивность износа накладок и не должна превышать рекомендуемых значений (0,15…0,25 МПа)
Для расчета работы буксования используют формулы, базирующиеся на статической обработке экспериментальных данных. Для практических расчетов может быть использована следующая формула
где Ja – приведенный момент инерции автомобиля, Н×м×с2;
wе – угловая скорость вращения коленчатого вала, с-1;
Мy - момент сопротивления движению автомобиля, приведенный к коленчатому валу двигателя, Н×м
Момент инерции Jaопределяют по формуле
где ik и i0 – передаточные числа коробки перемены передач и главной передачи, по заданию ik = 3,1 и i0 = 5,3;
ma – полная масса автомобиля, по заданию ma = 3550 кг
Угловая скорость коленчатого вала двигателя при максимальной скорости
Угловая частота вращения коленчатого вала двигателя в момент включения сцепления
Приведенный момент сопротивления движению
где y - коэффициент суммарного сопротивления дороги;
hтр – коэффициент полезного действия трансмиссии
Расчет работы буксования
Удельная работа буксования
Массу нажимного диска находим из формулы
где g - доля теплоты, приходящаяся на рассчитываемую деталь, g = 0,5;
с – удельная массовая доля чугуна, с = 481,5 (Дж/(кг×град))
Исходя из массы диска и плотности материала определим толщину нажимного диска
4.3 Расчет деталей
4.3.1 Нажимной диск
Нажимной диск обычно выполняется из чугуна, который имеет низкое сопротивление растяжению и при воздействии центробежных сил может разрушится. Поэтому он проверяется по величине окружной скорости
4.3.2 Цилиндрическая нажимная пружина
Нажимное усилие одной пружины вычисляют по формуле
где Р1 – номинальная сила, действующая на пружину;
Zn – число пружин;
Dl – рабочий ход пружины, принимаем равным 3,0 мм
При выключении сцепления деформация пружин увеличивается на величину хода Dl, в результате чего сила упругости возрастает до значения Р2. Управление сцеплением не затрудняется, если усилие пружин при деформации увеличится на величину не более 10-20%,т.е.
Задаемся индексом пружины
Определяем коэффициент, учитывающий кривизну витков и влияние поперечной силы
Диаметр проволоки С ГОСТ 14963-78 номинальный диаметр принимаем d = 5,0 ммСредний диаметр пружины:
Жесткость пружины составляет величину
Число рабочих витков пружины:
где G – модуль упругости при кручении;
принимаем G = 80 Гпа
Полное число витков
Так как посадка витка на виток не допустима, то при предельной нагрузке Р2, должен оставаться зазор между витками
Шаг пружины t, в свободном состоянии
Высота полностью сжатой пружины
Высота пружины в свободном состоянии
Высота пружины при предварительной деформации (под нагрузкой Р1)
4.4 Расчет вала сцепления
Вал сцепления рассчитывают на кручение по максимальному крутящему моменту двигателя Memax. Диаметр вала в самом узком сечении должен быть не менее
где [t] – допускаемые касательные напряжения, [t] = 100 МПа
В соответствии с ГОСТ 6636-69 – «Основные нормы взаимозаменяемости. Нормальные линейные размеры» расчетный диаметр вала принимаем dв = 21 мм.
4.5 Ступица ведомого диска
Для применяемых соотношений элементов шлицевых соединений основным является расчет на смятие
где a - коэффициент точности прилегания шлицев, a = 0,75;
z – число шлицев;
F – расчетная площадь шлицев, м2;
rср – средний радиус шлицев, м
Рабочая площадь шлицев
где l – рабочая длина шлицев;
D и d – диаметр вершин и диаметр впадин шлицев, соответственно, м;
f – фаска у головки зуба
Средний радиус шлицев
Для применяемых соотношений элементов шлицевых соединений основным является расчет на смятие
4.6 Подшипник выключения сцепления
Динамическая нагрузка на подшипник выключения
где Р – эквивалентная динамическая нагрузка, Н;
L – долговечность подшипника, млн. об.;
n- степень для шариковых подшипников, n = 3
Эквивалентная динамическая нагрузка определяется по формуле
где Q – осевое усилие на подшипник, Н;
Y – переводной коэффициент осевой нагрузки, Y = 2,3;
kб – коэффициент безопасности, kб = 1,55;
kт – температурный коэффициент, kт = 1,0
Осевое усилие, действующее на подшипник, вычисляется по формуле
где ip – передаточное число рычагов выключения, ip = 4
Эквивалентная динамическая нагрузка
Долговечность подшипника вычисляется по формуле
где 0,1 – коэффициент, показывающий, что время работы подшипника составляет 10% от времени работы автомобиля;
S – пробег автомобиля до капитального ремонта, км;