Технология неразрушающего контроля
Методы неразрушающего контроля позволяют оценивать внутреннее или внешнее состояние материалов, деталей или конструкций без их повреждения или нарушения режима работы. Неразрушающий контроль может включать как простой визуальный осмотр, так и сложный ультразвуковой анализ микроструктуры при окружающей температуре или при охлаждении материала. При выборе метода неразрушающего контроля для конкретного применения необходимо иметь представление о его технологии. Помимо изучения физических возможностей метода, важно также ознакомление с очертанием обследуемой детали, типом и предполагаемым местом разрыва или наличием дефекта. В большинстве случаев используются технические требования к методике проверки, в число которых входят:
· уровень аттестации оператора;
· разрешенные методы неразрушающего контроля;
· требования к установке и ее проверке;
· приемочные критерии;
· документация и формы отчетности;
· требования к чистоте исследуемой поверхности до и после проверки.
Большинство существующих технологий неразрушающего контроля можно разделить на семь методов: механический и оптический; проникающее излучение; электромагнитный и электронный; звуковой и ультразвуковой; химико-аналитический; анализ изображения сигнала; термический. В табл1 приведены основные технические средства, используемые в этих методах.
Для проверки рельсов в пути обычно применяют ультразвуковой метод. В нем используются импульсные эхо-сигналы и анализ изменений ультразвука. Эти технические средства доказали свою надежность. Однако все существующие методы неразрушающего контроля имеют свои ограничения по применению. На способность выявлять дефекты в рельсах с помощью ультразвуковых методов оказывают влияние:
· состояние поверхности рельса, характеризующееся наличием отслоений и выщербин металла, сетки поверхностных трещин, избыточной смазки, следов от шлифовальных кругов; геометрия головки рельса (изношенный профиль);
· форма дефекта и его ориентация;
· электрический или механический шум, проникающий в щуп;
· недостаточно плотный контакт щуп с поверхностью рельса.
Таблица 3
Эксплуатационные характеристики бесконтактных ультразвуковых щупов-преобразователей
Щуп преобразователя | Эффективность передатчика | Эффективность приемника | Частотаколебаний | Удаленность | Геометрия детали | Скорость сканирования | Расходимость оптического ■,'■■ пучка |
Воздушная среда | Средняя, низкая для металлов | Средняя | 20 кГц-5 МГц | 0,5- 12 см | Следует учитывать многовариантность геометрических параметров деталей | Средняя 40 см/с (2 м/с фиксированная) | Малая (1-5 см) |
Водная струя | Высокая | Высокая | 0,5- 15 МГц | 1 -20 см | Ограниченная по доступности и радиусу кривизны | Тоже | Малая (0,2 -1см) |
Лазер-оптический | Низкая | 20 кГц - 20 М Гц | 1 -1000 см | Весьма переменная | Максимальная 200 см/с (20 м/с фиксированная) | Незначительная (0,05 ~ 1 см) |
Современные ультразвуковые методы проверки ПОСЦЮШИ на использовании жидкого связующего вещества и непосредственном контакте искателя с обследуемой поверхностью. Это ограничивает зону проверяемого сечения рельса. Бесконтактные системы позволяют увеличить площадь проверяемого сечения рельса.
Перспективные технологии
Центр транспортных технологий (ТТС, США) и университет JohnsHopkins работали над идентификацией ультразвуковых технических средств, которые можно использовать для проверки рельсов в пути. Университет провел сопоставление различных ультразвуковых устройств, которые можно применять на контактной и бесконтактной основе. В табл. 2 приведены рабочие характеристики ультразвуковых щупов различных типов, приспособленных для сканирования.
Наиболее перспективными являются бесконтактные технические средства. К ним относятся преобразователи, связанные через воздушную среду или водную струю, а также лазерно-оптические.
В табл. 3 сопоставлены данные по бесконтактным устройствам трех типов. Их сравнение показывает, что путем объединения лазер-оптического передающего преобразователя с принимающим, связанным с рельсом через воздушную среду, при дефектоскопии может не потребоваться смачивание рельсов для лучшего проникновения ультразвука в головку рельса. Применение такой бесконтактной системы позволяет устранить или свести к минимуму некоторые ограничения, присущие обычным ультразвуковым методам проверки рельсов.
Предварительные результаты показали, что использование лазерно-оптических передающих преобразователей, объединенных с принимающими, позволяет выявлять поперечные трещины в подошве рельса. Бесконтактный метод, помимо устранения потребности в жидкой связующей среде между преобразователем и поверхностью рельса, сводит к минимуму помехи, возникающие при проверке контактными ультразвуковыми методами стрелочных переводов и глухих пересечений, стыковых накладок, костылей, рельсовых клемм и других элементов пути.
Схема ультразвуковой дефектоскопии рельсов с помощью лазерного преобразователя
Работу устройства проверили на образце рельса в лабораторных условиях и на рельсах длиной 6,1 м, установленных в пути. Для испытаний в пути преобразователи лазерный и с воздушной связью разместили на ручной рельсовой тележке. Эту систему планировали оценить на испытательном полигоне ТТС к концу 2002г.
При содействии Ассоциации американских железных дорог (AAR) ТТС планировал продолжить разработку методов дефектоскопии рельсов, которые дополнят существующие измерительные системы. Основное внимание будет уделено повышению эффективности проверки состояния рельсов. Удачные варианты планировали реализовать в виде опытных образцов и провести их испытания для оценки эксплуатационных возможностей. Наиболее эффективные системы будут представлены к внедрению.
VI. НЕРАЗРУШАЮЩИЙ КОНТРОЛЬ ПРИ РЕМОНТЕ И ТЕХНИЧЕСКОМ ОБСЛУЖИВАНИИ ПОДВИЖНОГО СОСТАВА
В.А. СМИРНОВ, заместитель генерального директора — главный инженер ОАО «Научно-исследовательский институт технологии, контроля и диагностики железнодорожного транспорта», кандидат технических наук В.Л. ЛАЗАРЕВ, главный конструктор Проектно-конструкторского бюро локомотивного хозяйства ОАО «РЖД»
Н.Ю. ИЛЬЮЩЕНКОВА, начальник сектора неразрушающего контроля Проектно-конструкторского бюро вагонного хозяйства ОАО «РЖД»
На предприятиях по ремонту подвижного состава железных дорог Германии и Франции применяются ультразвуковой, магнитопорошковый, вихретоковый, визуальный, капиллярный и рентгенографический методы неразрушающего контроля (НК). Основным объектом неразрушающего контроля подвижного состава являются колесные пары.
При поступлении колесных пар в ремонт на первой позиции технологического процесса на автоматизированной установке ультразвукового контроля с элекромагнитоакустическими преобразователями измеряются остаточные механические напряжения в колесах (для подвижного состава с колодочными тормозами). Забракованные колесные пары направляются на термообработку. В дробеструйной установке стальной дробью (диаметром около 1 мм) очищаются диски колес, а также зоны контакта ультразвукового преобразователя с поверхностью оси. Далее при помощи оптической или лазерной автоматизированной измерительной установки выполняются контроль геометрических параметров и обточка колесных пар. Установки измеряют диаметры и профили колес по кругу катания, расстояние между внутренними гранями, ширину обода, длину и диаметр шеек. Колесная пара подъемным устройством устанавливается на стенд и приводится во вращение фрикционным роликом. На оптической установке профили обоих колес видны на экране на фоне шаблона стандартного профиля. Лазерная установка обеспечивает автоматический контроль с электронной паспортизацией данных колесных пар колеи 1435мм диаметром от 630 до 1005мм массой до 2 т. Время проверки колесной пары - порядка 5 мин.
Неразрушающий контроль цельнокатаных колесных пар при ремонте осуществляется с использованием автоматизированной установки AURA (Фраунгофе-ровский институт НК, Германия), оснащенной манипуляторами со сканирующими устройствами для ультразвукового и вихретокового контроля и многоканальной системой сбора и обработки данных.
Контроль поверхности катания на наличие термических трещин (образуются при торможении колодочными тормозами) осуществляется с использованием вихре-токовых преобразователей. Для обеспечения высокой помехозащищенности блоки электроники ультразвукового модуля обработки данных помещены в непосредственной близости от датчиков на манипуляторе сканирующего устройства. В современных модификациях используются многоэлементные преобразователи с фазированными решетками, что позволяет сократить количество датчиков. Перемещение сканирующих устройств, подача контактирующей жидкости (вода) и контрольные операции осуществляются автоматически. Время проверки колесной пары -А—7 мин.