Смекни!
smekni.com

Енергохолодильні системи вагонів та їх технічне обслуговування (стр. 4 из 6)

, (4.3)

де

;

І6 - ентальпія у точці Б (12); Іа - ентальпія у точці А (8).

Q – сумарне теплонадходження у вагон, кДж/год;

кДж/год,

де Q1 - теплонадходження крізь огородження кузова;

Qз - загальні теплонадходження за рахунок сонячної радіації черех дах та одну бокову стінку вагона;

Q4 – теплонадходження від двигунів вентиляторів;

Q5 - теплонадходження від встановленого у вагоні устаткування;

Q6 – теплонаджодження від вантажу;

Q7 – кількість тепла, потрібного для холодильних машин на доведення вантажу до стану перевезення.

,

де

- обсяг інфільтраційного повітря, м3/год (приймемо 50 м3/год);

- густина зовнішнього повітря (приймемо 1,2 кг/м3).

Отже

.

Така ж кількість повітря, що пройшла охолоджувач, залишає вагон. Параметри, які відповідають точці А, забезпечуються домішуванням повітря, що охолоджується, в кількості

та
теплого повітря. Тоді точка С з параметрами повітря безпосередньо за повітроохолоджувачем буде знаходиться на прямій ЗА, а відрізок АС знаходиться з співвідношенні

Знаходимо у отриманих точках Д і С ентальпію та температуру:

ІД=13 кДж/кг, tд=4,80 С,

ІС=6,5 кДж/кг, tс= - 0,50 С.

Тоді корисна холодопродуктивність знайдеться

(4.3)

В рефрижераторних вагонах завжди встановлюють по дві холодильні машини так, щоб кожна з них мала холодопродуктивність не меншу 75% від загальної. Таким чином, холодопродуктивність однієї холодильної машини складе

(4.4)

На виході з випаровувача повітря повинно мати температуру Іс. Отже, у випаровувачі температура кипіння холодоагенту повинна бути ще нижче. Як правило, її приймають

t0=tc-(10¸15)°C (4.5)

t0= - 0,5 – 10= - 10,5°C

5. Опис прийнятої системи охолодження

Порядок теплового розрахунку та підбору вузлів холодильної установки залежить від принципової схеми одержання холоду. На рефрижераторних автономних вагонах застосовуються в основному безпосереднє охолодження. Тут проміжний теплоносій відсутній та за допомогою повітроохолоджувачів безпосередньо охолоджується повітря, що забирається з вантажного приміщення. У цьому випадку будемо застосовувати двохступінчасту холодильну установку ФАЛ-056/2 [табл.10 (4)], що працює на фреоні – 12, який має достатньо гарні термодинамічні властивості: порівняно високу холодопродуктивність та низьку температуру кипіння та температурою достигання. Цей безпечне, не має запаху, не вогненебезпечне, майже не розтворяється в воді, але гарно розтворяється у маслі, причому інтенсивність цього процесу збільшується з пониженням температури і підвищенням тиску. Обезводнений фреон-12 нейтральний до всіх металів. Він надзвичайно тягучий (потребується надзвичайна герметичність системи), не горить.

Холодильна установка складається з двох основних груп: компресорно-конденсаторного агрегату, розміщеного в мастильному відділенні, та випаровувача, розміщеного в торці вантажного приміщення.

Вагон охолоджує дві холодильні машини (рис.5.1). Із ресиверу 13 рідкий фреон-12 потрапляє через фільтр-осушувач 15 до теплорегулюючого клапана 2, звідки через розширювач 1 потрапляє до секції випаровувача 3 та кипить при низькому тиску та низькій температурі. В результаті виробляється пар, який відсмоктується з випаровувача чотирьохциліндровим компресором 11 через пусковій регулятор 6 і зворотній клапан 5. Установка не має теплообмінника. При вході у компресор пар фреону проходить біля обмотки електродвигуна та охолоджує її. Після двоступеневого стискування в компресорі без проміжного охолодження вони подаються в масловіддільник 9, а потів у конденсатор 12, де конденсуються, віддаючи тепло повітрю, яке обдуває труби конденсатора. Повітря через конденсатор проганяється вентиляторами 14. З конденсатора рідкий фреон потрапляє до ресиверу 13, який має оглядове скло для перевірки рівня рідини. Його ємність 38 кг, а масловіддільника 6 кг. Масло з масловіддільника 9 через поплавкову камеру 10 автоматично зливається назад в картер компресора. Робота установки контролюється за допомогою манометрів та вакуум-манометрів 8. Захищають холодильну установку від надмірного підвищення тиску 16.

Холодильна установка працює автоматично в залежності від заданих температурних параметрів і може знаходитися у трьох режимах: охолодження, відтаювання і опалення.

Рис. 5.1. Схема холодильної машини АРВ.

6. Побудова холодильного циклу в діаграмі Lg р-і

Метою побудови холодильного циклу є отримання даних для розрахунку елементів холодильної машини: компресора, конденсатора, теплорегулюючого вентиля та випаровувача.

як правило, для охолодження холодоагенту у конденсаторі використовується зовнішнє повітря. тому температура конденсації холодоагенту повинна бути більшою на 10¸15°С.

, (6.1)

де tз – зовнішня температура поітря, 0С.

На підставі відомої температури холодоагенту у випаровувачі t0=-10,50Сзнаходимо тиск у останньому Р0=0,19 МПа, за відомою температурою конденсації tк=390С знаходимо тиск конденсації Рк=0,95 МПа. Проводимо на діаграмі ізобари Р0=const та Pк=const. Оскільки у випаровувачі холодоагент кипить, то на виході з нього пара буде вогкою (тобто міститиме у собі частки не випаруваного холодоагенту). Тому точка 1¢, яка відповідає параметрам пари на виході з випарника, знаходиться на перетині ізобари Р0=const та лінії міри сухості X1=const (X1 - ступінь сухості парів холодоагенту на виході з випаровувача, звичайно вона дорівнює X1=0,96¸0,98).

На шляху від випаровувача до компресора пара холодоагенту нагрівається та стає сухою перегрітою. Величина перегрівання Dtпер залежить від місця розташування випаровувача і складає 3¸5°С. Тоді точка 1, яка характеризує параметри холодоагенту на вході у компресор, знаходиться на перетині ізобари Р0=const та ізотерми t1=t0+Dtпер=-10,5+5=-5,50С. Стиск пари холодоагенту в компресорі приймаємо адіабатним (S=const). Точка 2, відповідна параметрам холодоагенту на виході з компресора (тобто на вході у конденсатор), знайдеться на перетині адіабати, проведеної з точки 1 та ізобари Pк=const. У конденсаторі при незмінному тиску пара холодоагенту охолоджується і, як тільки їхня температура дорівнюватиме температурі конденсації (точка 2), почнеться перетворення пари у рідину аж до повної конденсації (точка 3¢). Для отримання сталої рідинної фази конденсатори проектують таким чином, щоб на виході з останнього холодоагент мав температуру завжди нижче температури конденсації (але завжди вище температури зовнішнього повітря)

t3=tзов+(4¸5)°С (5.1)

t3=29+ 5=34°С

Точка 3, яка відповідає параметрам холодоагенту на виході з конденсатора, знаходиться на перетині ізобари Pк=const та ізотерми t3=const. Процес дроселювання йде без зміни тепловмісту холодоагенту, тому точка 4, яка відповідає параметрам холодоагенту на вході до випаровувача, знаходиться на перетині ізобари Р0=const та ізоентальпи i3=const.

На підставі побудованого циклу ПКХМ знаходимо такі дані, що необхідні для розрахунку елементів холодильної машини:

· питома холодопродуктивність 1 кг пари холодоагенту, кдж/кг

q0=i1-i4, (5.2)

де i1,i4 – відповідна ентальпія холодоагенту;

q0=i1-i4=553-432=121 кДж/год