Смекни!
smekni.com

Енергохолодильні системи вагонів та їх технічне обслуговування (стр. 3 из 6)

Повний вплив сонячної радіації складається з прямого опромінення Сонцем (пряма сонячна радіація) і опромінення з боку атмосфери, що розсіює сонячні промені (розсіяна сонячна радіація).

Інтенсивність прямої сонячної радіації, кДж/м2´год, на поверхню, перпендикулярну до напрямку променів, можна визначити за наступною формулою:

, (3.3)

де 4900 – сонячна стала;

h - висота Сонця, град або рад (h = 46)

r - коефіцієнт прозорості атмосфери, що змінюється в межах від 0,7 до 0,8 (r = 0,75).

Висота Сонця h обчислюється за формулою:

sinh=sinj´sind +cosj´ cosd´cosg, (3.4)

де j - географічна широта (j=550);

d - схилення Сонця(

);

g - годинний кут (

).

Оскільки 1 годині відповідає поворот Землі навколо осі на

рад (15°), то g=
t1 рад, або g=15t1 град, де t1 – місцевий час в годинах, який відлічується після півдня.

Отримуємо:

Sinh=sin55*sin20+cos55*cos20*cos45=0.6585

І інтенсивність прямої сонячної радіації:

In=4900*(0,6585/0,6585+((1-0,75/0,75)))=3252,999

Інтенсивність прямої сонячної радіації на горизонтальних і вертикальних поверхнях плоских конструкцій огородження, до яких можуть бути віднесені дахи і стіни вагонів, виражаються відповідно формулами:

(3.5)

Iдах=3252,999*0,6585=2142,09

, (3.6)

де aс- це азимут Сонця (

)

x - кут, що визначає положення вертикальної поверхні відносно меридіана( x=00).

sinaс=

(3.7)

sinaс=cos20*sin55/cos46=1,1

Iст=3252,999*cos46°*sin(73°-0)=2485,7

Для визначення інтенсивності повної сонячної радіації необхідно скласти інтенсивності прямої і розсіяної радіації. Інтенсивність розсіяної сонячної радіації, що діє на горизонтальну поверхню, можна визначити по формулі:

(3.8)

Інтенсивність розсіяної сонячної радіації, що діє на вертикальну поверхню, приймається рівній половині інтенсивності розсіяної сонячної радіації, що діє на горизонтальну поверхню.

(3.9)

Інтенсивність повної сонячної радіації, що діє на горизонтальну поверхню:

(3.10)

Iдах=2142,09+199,52=2341,61

Інтенсивність повної сонячної радіації, що діє на вертикальну поверхню:

(3.11)

Iст=2485,7+99,76=2585,46

Теплонадходження сонячної радіації через непрозорі огородження.

Вважаємо, що сонячна радіація діє лише на дах та одну бокову стіну:

=
(3.12)

Q3дах=2341,61*0,45*0,51*80,22/218,25=197,53

=
(3.13)

Загальні теплонадходження:

(3.14)

Циркуляція повітря у вантажному приміщенні вагона здійснюється вентиляторами, електродвигуни яких виділяють певну кількість тепла:

, (3.15)

де N – потужність, що споживається електродвигунами, кВт. Потужність електродвигунів кожного не перевищує 1¸1,5 кВт

n - кількість вентиляторів у вагоні;

y - коефіцієнт, що враховує тривалість роботи вентиляторів на добу

Величина y обчислюється за формулою

, де tp=22 год – тривалість роботи вентиляторів на протязі доби (
).

Теплонадходження від встановленого у вагоні устаткування Q5 дорівнюють сумарній потужності постійно працюючих споживачів електроенергії.

(кДж/год) (3.10)

де N – потужність, кВт (для рефрижераторних вагонів 3 кВт).

(кДж/год)

при розрахунку теплонадходжень у рефрижераторні вагони, крім зазначених вище факторів, необхідно враховувати також, що біологічно активні вантажі (свіжі овочі та фрукти) виділяють тепло. Кількість останнього можна обчислити за формулою:

(3.11)

де rван – густина завантаження, кг/м3. Вона залежить від особливостей вантажу та його упаковки. Для попередніх розрахунків рекомендується приймати rван=280 кг/м3.

j - частина упаковки в загальній масі вантажу. Вона також залежить від особливостей вантажу та його упаковки. Рекомендується приймати j=0,15.

qван – біологічне тепло, кДж/кг´год (Вт/кг). Для фруктів 0,079.

Vван - об'єм вантажу, який залежить від висоти завантаження плодоовочів (Vван=108).

Q6=108*280*0.079*(1-0.15)=2030.6 кДж/кг

Значна частина вантажів завантажується у вантажне приміщення рефрижераторних вагонів в неохолодженому стані. Це вимагає значних витрат потужності холодильних машин на доведення вантажу для стану перевезення. Кількість тепла, яке в цьому випадку повинно відводитися від вантажу, обчислюється за формулою:

(3.12)

де Сван – питома теплоємність вантажу (нетто);

Ст – питома теплоємність упаковки (тари);

t - тривалість охолодження. Вона знаходиться в межах від 60 до 72 годин.

4. Визначення необхідної холодопродуктивності холодильної машини

Для визначення необхідної холодопродуктивності потрібно побудувати І-d діаграми процесів обробки вологого повітря АПВ. Для побудови діаграми нам відома середня температура у вагоні tв=20С в місці розташування контрольного термометра. У різних точках вагона температура буде неоднаковою. Найнижча температура буде на виході з повітроохолоджувача. Пройшовши через робочу зону вагона, повітря асимілює всю теплоту, що надійшла до вагона. При цьому воно нагріється. Тому найбільш висока температура буде на вході до повітроохолоджувача. Коливання температури на вході та виході з робочої зони вагона складуть близько 4¸6°С. Якщо задати означену різницю температур tб-tа, можна знайти температуру повітря на вході і виході з вагона:

(4.1)

, (4.2)

де tв – внутрішня температура у вагоні;

tб -ta = 40 C – коливання температури на вході і виході з робочої зони вагона.

Навіть до цілком справного вагона при закритих шиберах вентиляційної системи під час руху надходить інфільтраційне повітря. З практики відомо, що його об¢єм складає до 50 м3/год. Для зручності розрахунків приймаємо, що половина інфільтраційного повітря домішується безпосередньо перед повітроохолоджувачем, а друга половина безпосередньо за ним. Вважаємо, що вологість повітря на вході до вагона складе j=85% та вантаж під час руху вологи не виділяє.

Тоді за відомими значеннями температури і відносної вологості зовнішнього повітря tзов=290С, та jзов=50% наносимо на І-d діаграмі точку 3, яка відповідає параметрам зовнішнього повітря (див. рисунок 4.1). На точці перетину ізотерми Іа=соnst (ta=0) і лінії рівної відносної вологості j=85% наносимо точку А, яка характеризує параметри повітря на вході у вагон. Процес нагріву повітря у вагоні йде без зміни вмісту вологи, тому з точки А необхідно провести лінію d=соnst до перетину з ізотермою tб=соnst. Таким чином, буде знайдене положення точки Б, що характеризує параметри повітря на виході з робочої зони вагона. На шляху до повітроохолоджувача домішується інфільтраційне повітря. Отже, точка Д, яка відповідає параметрам повітря на вході до повітроохолоджувача, буде знаходитися на відрізку Б-3 (рисунок 4.1), причому довжина відрізку БД знайдеться, як