Смекни!
smekni.com

Виды девиации магнитного компаса (стр. 2 из 3)

При этом в успокоителе появляется избыток жидкости в каком-либо сосуде, который в свою очередь приводит к возникновению инерционной девиации.

В чистом виде инерционная девиация II рода возникает либо у апериодического гирокомпаса, или, если компас неапериодический, то при маневрировании в расчетной широте. В широтах, отличных от расчетной, в показаниях гирокомпаса возникают одновременно инерционные девиации I и II рода.

Для предотвращения появления инерционной девиации ІІ рода в некоторых конструкциях двухгироскопных компасов применяют специальные устройства — выключатели затухания, перекрывающие на время маневра соединительную трубку сосудов успокоителя.

Как правило, двухгироскопные гирокомпасы, находящиеся в эксплуатации па судах морского флота, являются неапериодическими и, кроме того, в комплекте гирокомпаса отсутствует прибор управления выключателем затухания. Это означает, что в общем случае при маневрах в показаниях гирокомпаса будет возникать одновременно инерционная девиация I и II рода. Таким образом, судоводителю следует считаться с тем, что показания гирокомпаса в течение некоторого интервала времени после завершения маневра будут неточны вследствие существования суммарной инерционной девиации j.

Когда судно начинает движение, то в показаниях маятниковых гирокомпасов появляется погрешность, которая называется скоростной девиацией. Уравнение движения чувствительного элемента гирокомпаса в случае, когда судно движется с постоянной скоростью vс и на постоянном курсе ИК, можно получить в следующем виде:

Поскольку существуют таблицы суммарной инерционной девиации рассчитанные в соответствии с приближенной теорией гирокомпаса и, так как каждый конкретный чувствительный элемент имеет в пределах заводских допусков определенное отклонение своих параметров от их стандартного значения, то не имеется достаточных оснований для прямого использования таблицы для расчета поправки гирокомпаса.

Однако качественная картина возникновения и развития во времени суммарной инерционной девиации должна приниматься судоводителем в расчет.

С целью уменьшения влияния суммарной инерционной девиации на точность судовождения можно предложить следующие рекомендации:

1) поправку гирокомпаса определять либо на стоянке судна, либо когда оно 1,5—2 ч следует с неизменной скоростью и постоянным курсом;

2) после маневра судна, связанного с поворотом на новый курс, сличить показания магнитного и гироскопического компасов сразу после окончания поворота с тем, чтобы определить величину новой поправки магнитного компаса на тот случай, если гирокомпас выйдет из строя. Повторить сличение показаний гирокомпаса и магнитного компаса через 1,5—2 ч после маневра и полученное значение поправки магнитного компаса считать уточненным и принимать это значение в последующем;

3) в течение полутора-двух часов после маневра не следует определять место судна по пеленгам двух предметов. В случае необходимости такого определения полученное место судна нельзя считать достоверным. При определении места судна по пеленгам трех предметов необходимо пеленгование выполнять как можно быстрее (в течение 1—2 мин) с тем, чтобы все пеленги содержали ошибку примерно одной и той же величины, которую затем надо исключить известным из навигации способом. Лучше всего в рассматриваемом случае определять место судна способами, не связанными с пеленгованием;

4) способ уничтожения и определения девиации магнитного компаса по сличению с гирокомпасом при условии, что судно совершает повороты, имея линейную скорость, следует считать приближенным.

При развороте судна на месте (например, с помощью буксиров) инерционная девиация в показаниях гирокомпаса не возникает и указанный способ становится более точным.

Следует помнить, что эти рекомендации имеют смысл только в том случае, если при маневре vN имеет величину не менее 5 узлов.

Для компенсации скоростной погрешности Vк гирокомпасу присоединяют специальное устройство — корректор. Корректор имеет два диска, наложенных один на другой (рис. 37). Нижний диск, соединенный со следящей системой гирокомпаса, строго ориентирован относительно гиросферы. Его паз П расположен по оси ОЕК гиросферы. При повороте судна следящая система гирокомпаса возвращается в согласованное с гиросферой положение, а паз нижнего диска будет всегда направлен на восток гиросферы независимо от возможного изменения курса судна. Верхний диск, наложенный на нижний, соединен с последним в точке А штырем особой конструкции, укрепленным с нижней стороны верхнего диска на расстоянии О1А =Rowoот центра этого диска.

Палец западает в паз нижнего диска, эксцентрично соединяя оба диска. Верхний диск укреплен на специальной каретке и может сдвигаться относительно нижнего в направлении диаметральной плоскости судна. Расстояние 001 между центрами дисков можно устанавливать в зависимости от известных величин скорости судна и широты места. Из рис. 37 видно, что направление паза П нижнего диска соответствует направлению

Ек — на восток гиросферы, поэтому курс судна по показаниям гиросферы, содержащий скоростную погрешность v, определится углом КК.

Устранение из показаний гирокомпаса скоростной погрешности Vдостигается установкой каретки с верхним диском в направлении диаметральной плоскости судна так, чтобы расстояние между центрами дисков было равно величине 001 = vcsec. Тогда курс КК, отсчитываемый по показаниям гиросферы, будет отличаться на величину угла 0 от курса ИК, отсчитываемого по верхнему диску (картушке компаса) от линии Nи01. Линия Nи01 перпендикулярна направлению 01А. Следовательно,

КК = ИК +  0.

Из прямоугольного треугольника B1OAнаходим:

tg0 = B1O/(AO1 + B1O1)

В гирокомпасе с электромагнитным управлением использован более простой способ устранения баллистических девиаций. Для этого маятник индикатора горизонта сильно задемпфирован, а углы его отклонения от равновесного положения ограничены специальными упорами до относительно малой величины.

Кроме того, чтобы снизить скорость баллистического перемещения гироскопа за время действия ускорения, период незатухающих колебаний в рабочем режиме гирокомпаса выбирается большим — до 120—180 мин.

Возможен еще один простой и, по-видимому, более эффективный способ устранения баллистических девиаций.

Если в индикаторе горизонта предусмотреть устройство, которое автоматически отключало бы сигнал индикатора горизонта от схемы управления гироскопом, когда маятник под действием ускорения достигает одного из упоров, то гироскоп вместо прецессирования с малой скоростью во время действия ускорения становится свободным. Можно ожидать, что в этом случае отклонение гироскопа за время маневрирования будет меньшим, чем при первом способе компенсации. Следует заметить, что в обоих случаях при маневрировании корректирующие моменты остаются приложенными к гироскопу.

Эффективным способом устранения баллистических девиаций для гирокомпасов с электромагнитным управлением является способ компенсации силы инерции, воздействующей на маятник индикатора горизонта при наличии линейных ускорений.

Интеркардинальная девиация. При движении судна в условиях качки следящая сфера гирокомпаса раскачивается вокруг своей оси подвеса в такт с качкой под действием составляющей ускорения в плоскости Е—W.

Составляющая ускорения в плоскости N—S, воздействующая на маятник следящей сферы, меняя свое направление синхронно-с качкой, создает вертикальный момент, аналогично тому, как это происходит у обычных маятниковых компасов, но в отличие от них в гирокомпасе с электромагнитным управлением этот момент сам по себе не вызывает интеркардинальной девиации.

Инерционные моменты, действующие на следящую сферу во время качки, приводят лишь к дополнительным динамическим нагрузкам на двигатели азимутальной и горизонтальной следящих систем, но не дают существенных ошибок в показаниях гирокомпаса.

Основная причина, определяющая появление интеркардинальной девиации у гирокомпаса с косвенным управлением, заключается в том, что составляющая ускорения в плоскости N—S действует и на маятник индикатора горизонта. Она вызывает появление сигнала, пропорционального ускорению и меняющего знак в такт с качкой. Этот сигнал поступает на двигатели, которые прикладывают к гироскопу через торсионы знакопеременные моменты. Поскольку одновременно происходит раскачивание следящей сферы, оси двигателей рассогласовываются с осями соответствующих торсионов на угол, примерно равный амплитуде качки. В результате, когда сигнал от индикатора горизонта поступает на двигатели, моменты, прикладываемые к гироскопу торсионами, создают две составляющие — горизонтальную и вертикальную.

Так как горизонтальные торсионы имеют жесткость, во много раз большую, чем вертикальные, то вертикальная составляющая моментов от горизонтальных торсионов по абсолютной величине значительно превосходит остальные вертикальные моменты. Она и образует постоянный вертикальный момент, вызывающий ингеркардинальную девиацию гирокомпаса па качке. Как видно, механика появления интеркардинальной девиации у гирокомпасов с электромагнитным управлением иная, чем у обычных маятниковых гирокомпасов, но схема образования постоянного вертикального момента при качке по существу одинакова.