Смекни!
smekni.com

Автомобильные датчики и интеллектуальные транспортные системы (стр. 2 из 4)

Большинство GPS-навигаторов способны принять сигнал одновременно от 12 спутников. Этого более чем достаточно для решения большинства задач. Однако в настоящее время в продаже появились 14- и даже 18-канальные приемники. Но одновременно принять сигнал даже от 12 спутников очень сложно. Для этого необходимо находиться на открытом месте, причем само спутниковое созвездие (то есть положение спутников на небосклоне) должно быть благоприятно. Принять же сигнал сразу от 18 спутников в настоящее время просто невозможно, так как часть из них скрыта и находится по другую сторону земного шара.

Система GPS содержит в себе три фундаментальных составляющих.

1. Космический сегмент представляет собой 24 спутника, находящихся на 6 различных круговых орбитах, которые расположены под углом 60 градусов друг к другу. Спутники движутся по орбитам радиусом 22 200 километров со скоростью 11 тысяч километров в час и совершают один оборот вокруг Земли за период, приблизительно равный 12 часам. Все они ежедневно повторяют свою траекторию с "опозданием" в 4 минуты.

Вес каждого спутника около 900 кг, размер более 5 м, включая солнечные батареи. На каждом спутнике установлены атомные часы, обеспечивающие высокую точность (10-9 сек), вычислительно кодирующее устройство и передатчики мощностью 50 Вт и 8 Вт, излучающие на частотах L1 = 1575,42 МГц и L2 = 1227,60 МГц.

В идеале в любой момент времени любая точка Земного шара находится в зоне видимости не менее трех спутников. Спутники можно "увидеть" даже на полюсах, правда они будут находиться низко над горизонтом, что влияет на точность измерений, но несущественно.

Справедливости ради стоит отметить, что есть все же "темные" области в высоких широтах, где одновременно может быть не более 2 спутников, что не позволяет определять координаты и нарушает работу приемника GPS. Однако такое положение дел длится лишь от 15 до 45 минут, в остальном система навигации GPS действительно глобальна.

2. Наземный сегмент контролируется Министерством Обороны США. Он состоит из пяти контрольно-измерительных станций, которые находятся на Гавайях, на Кваджалейне, на острове Вознесения, в Диего-Гарсия и Колорадо-Спрингс, четырех станций связи и центра управления всей системой, расположенного на авиабазе в Шривере, штат Колорадо.

Станции слежения непрерывно контролируют движение космических аппаратов и передают данные в центр управления. В центре вычисляют уточненные элементы спутниковых орбит и коэффициенты поправок шкал времени. Эти данные поступают по каналам станций связи на спутники не реже, чем один раз в сутки.

3. GPS-приемник - третий сегмент системы навигации, который позиционируется и позволяет вычислять географические координаты на основе полученных данных.

Но, к сожалению, несмотря на все высокие технологии, примененные в GPS погрешности этой системы также глобальны и не могут быть использованы компьютером как основные данные для автоводителяя. Сам навигатор, по заявлениям производителей, определяет местоположение с точностью до 3-5 м. Однако очень многое тут зависит от числа спутников, которые "видят" прибор и, опять-таки, от электронных карт. Дело в том, что в России для гражданского использования разрешены карты масштабом не крупнее чем 1:1000, т. е. в 1 см карты - 1 км местности. На практике же это значит, что 100 м будут умещаться в 1 мм на экране.

Автомобиль видящий и коммуницирующий


Перечисленные выше уже созданные элементы автоматизации снимают технические проблемы управления агрегатами автомобиля. Остаются проблемы ориентации и взаимодействия с внешней средой. Для ориентации в пространстве могут использоваться разнообразные устройства, например, инфракрасные датчики, действующие на предельно близком расстоянии. Эти устройства хорошо известны. Менее известен так называемый «ладар», который иногда еще именуют «лидаром» от английского названия Light-Imaging Detection and Ranging. Сначала он использовался как прибор для измерения атмосферных характеристик дистанционным способом лазерного зондирования. Позже усилиями компании SICK ладар стал составной частью системы измерения дистанции (Laser Measurement Sensor, LMS). Идея ладара не оригинальна: LMS излучает несколько лучей и воспринимает отраженные данные. Лазеры монтируются в головке, вращающейся со скоростью несколько сотен оборотов в минуту. Наибольшая сложность заключается в том, что при движении по земле на коротких расстояниях с большой скоростью возникают большие угловые перемещения. Поэтому, несмотря на использование различного рода систем стабилизации и сложных подвесов, для обработки изображений в режиме реального времени требуется применение серьезной вычислительной мощности и соответствующего программного обеспечения. О масштабе решаемых задач можно судить по тому, например, что сканирующий ладар Velodyne’s HDL-64E генерирует данные по 2,5 млн. точек в секунду и передает их в виде пакетов данных, используя Fast Ethernet.

Обладая в полной мере свойствами инерциальной навигационной системы с полным набором датчиков ориентации и перемещения (см рисунок), интегрированная система способна определять все параметры движения транспортного средства: угловые скорости, ускорения, ударные и вибрационные воздействия, перегрузки.

При этом в отличие от традиционных блоков датчиков движения в интегрированной системе реализован сложный математический аппарат пересчета воздействий в различные системы координат. Поэтому потребитель может использовать выходную информацию системы непосредственно для своих приложений без предварительной обработки.

Гироскопы для автомобильных навигационных систем

Как уже говорилось, все чаще в автомобили устанавливаются навигационные системы, предназначенные для ориентации в незнакомой водителю местности, поиска оптимального маршрута и т.д. Подавляющее большинство таких систем основано на системе глобального спутникового позиционирования (GPS). Однако такая система имеет существенный недостаток невозможность работы в зоне неуверенного приема сигнала со спутников, в условиях мегаполиса, в тоннелях, подземных гаражах и т.д. Иногда оказывается, что точность определения и отслеживания координат с использованием GPS недостаточна для работы системы в целом.

В этом случае на выручку GPS приходят различные дополнительные датчики, например гироскопические датчики, которые позволяют отследить скорость и направление перемещения автомобиля без участия спутниковых систем.

Компания Murata, активно занимающаяся вопросами разработок, представила на рынок новый гироскоп серии MEV-50A-R.

Принцип действия датчика основан на возникновении силы Кориолиса при повороте качающегося маятника вокруг оси качения. При этом возникает сила Кориолиса, перпендикулярная плоскости качения маятника. Датчик состоит из так называемой биморфной пластины. Биморфная пластина представляет собой две керамические пластины с разной поляризацией, соединенные вместе. На одну из пластин биморфа подается высокочастотное напряжение, под действием которого весь биморф приводится в колебательное движение. При этом со второй пластины снимается напряжение, которое возникает при ее колебании, вызванном колебаниями первой пластины. При повороте пластин вокруг своей оси возникает сила Кориолиса, которая изменяет характер колебаний керамических пластин и, соответственно, приводит к изменению напряжения, снимаемого со второй пластины. Далее, этот сигнал обрабатывается и на выходе гироскопического датчика получается напряжение, которое прямо пропорционально скорости поворота датчика вокруг рабочей оси. Эта техника измерения позволяет добиться пониженного значения шумов, по сравнению с существующими методиками, применяемыми в акселерометрах. В будущем компания Murata планирует добавить в гироскопы цифровую схему температурной компенсации. Для включения гироскопа в электрическую схему потребуется минимум внешних компонентов: 5В регулятор напряжения, АЦП (встроен в большинство современных микроконтроллеров), фильтрующий конденсатор и два резистора.

Радар

Второй датчик подразумевает использование радара, который работает по эффекту Доплера: устройство высылает радиоимпульсы, они отражаются от объекта и "летят" обратно. Затем компьютер вычисляет моментальную скорость объекта, к сожалению, с некоторой погрешностью. Согласно Закону об измерениях, при измерении скорости до 100 км/ч возможная погрешность составляет до 5 км/ч. Если же скорость объекта больше 100 км/ч, то погрешность измерений может составлять до 3 процентов.
Автор считает, что не стоит подробнее излагать возможные конструкции радаров, надеясь, что всем про это известно, тем более что следующий датчик схож по принципу действия, имеет более высокую точность и относительно недавно изобретён.

Ладар и лидар, два названия одного прибора.

Скорость можно также замерить ладаром, принцип работы которого похож на устройство обыкновенного лазерного дальномера. Для своих вычислений ладар берет за основу два местонахождения объекта и время, за которое он преодолел расстояние между ними. Далее компьютер делит расстояние на время и получает моментальную скорость. Стоит отметить, что если с радаром прицеливать не обязательно, то ладар необходимо направлять исключительно на номерной знак автомобиля, поскольку он является лучшим отражающим элементом на автомобиле.