М = Т = 65Нм
Передача движения от рычага к валу осуществляется с помощью шлицевого соединения. Применение шпоночного соединения, более простого в изготовлении, в данном случае невозможно, так как оно требует больших габаритов и не позволяет регулировать положение педали в пространстве. Шлицевое соединение представляет собой выступы на валу, называемые шлицами или зубьями, которые входят в соответствующие пазы ступицы. В зависимости от формы зубьев различают соединения с прямозубными, эвольвентными и треугольными шлицами.
Шлицевые соединения могут быть подвижными и неподвижными. В данном случае необходимо обеспечить неподвижное соединение между ступицей педали и валом. Шлицевое соединение имеет ряд достоинств по сравнению со шпоночными:
-большую несущую способность при одинаковых габаритах из-за значительно большей рабочей поверхности и равномерного распределения давления по высоте зубьев;
-большую усталостною прочность вала из-за меньшей концентрации напряжений;
-обеспечивает более точное центрирование ступицы по валу.
При установке дополнительных педалей на автомобиль возникает необходимость относительной регулировки положения ступицы, поэтому следует применять такое соединение, которое имеет наибольшее число зубьев. Такому требованию наиболее полно отвечают соединения с треугольным профилем зубьев, которые, как правило являются неподвижными и используются при стесненном диаметральном габарите.
Основными геометрическими параметрами являются:
- число зубьев Z, которое может быть от 20 до 70 ;
- модуль m=dδ/z.величина которого колеблется от 0.2 до 1,5 миллиметров;
- угол впадин 90о 72о и 60о .
Нормали автомобильной и тракторной промышленности предусматривают числа зубьев 32 и 48 ;
угол впадин 2αв=90о ;
номинальные диаметры D=5 … 75 миллиметров.
Центрирование соединения осуществляется только по боковым сторонам шлицев.
Шлицевые соединения реагируют на снятие :
σ =2Т/(dc∙ z ∙ h ∙ l ∙ ψ) ≤[σсм] ;
где σсм - расчетное напряжение снятия на рабочих поверхностях шлицев;
Т - расчетный передаваемый вращающий момент, Т = 65 Н∙м;
dc – средний диаметр шлицевого соединения, для шлицев треугольного профиля dc=dδ=m∙z ;
h – высота поверхности контакта шлицев, для принятого соединения
h= Dв - da/ z ;
da – номинальный внутренний диаметр отверстия в ступице; Dв – наружный диаметр зубьев вала ;
ψ = 0,75 – коэффициент, учитывающий неравномерность распределения нагрузки между шлицами ;
l – длина поверхности контакта шлицев, принимаемая равной длине ступицы;
[σсм] – допускаемое напряжение на смятие материала вала или ступицы, для неподвижного соединения без термической обработки шлицев при изготовлении вала и ступицы из среднеуглеродистых сталей величина
[σсм] = 100 … 110МПа для среднего режима работы , при легком режиме работы значения этих напряжений увеличивают на 25 … 40% ,при тяжелом режиме их необходимо снизить на 35 … 50%.
Возвратные пружины предназначены для возврата педалей в исходное положение после снятия с них нагрузки. При нажатии на дополнительную педаль в обычном режиме необходимо усилие 5 …10кГ ,это складывается из усилия, идущего на перемещение основных педалей тормоза или сцепления и усилия на дополнительное закручивание возвратной пружины. В конце хода дополнительной педали это усилие достигает максимальной величины. При проектировании возвратных пружин принимают , что на дополнительное закручивание пружины расходуется 20 …30% энергии. Для дальнейшего расчета принимаем, что25% от усилия ноги на педаль идет на дополнительное закручивание пружины, обозначим через Fпр эту часть усилия ноги.
Fпр = 0,25F = 0,25 ∙ 19 = 2,5 кГс = 25 Н
Вращающий момент ,который дополнительно закручивает возвратную пружину:
Тпр = Fпр ∙ L = 25 ∙ 0,28 = 7 Н∙м
4.2.ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ВАЛА.
Вал предназначен для передачи вращающего момента от дополнительных педалей сцепления и тормоза к основным.
Валы предназначены для передачи вращающего момента и поддержания деталей на них, в отличие от оси, которая вращающий момент не передаёт. Валы работают на кручение и изгиб, оси только на изгиб.
При проектном расчете вала известны :
- крутящий момент Т или мощность Р ;
- частота вращения n ;
- нагрузка и размеры основных деталей, расположенных на валу (например, зубчатых колёс ,а в данном случае дополнительных педалей). Требуется определить размеры и материал вала.
Валы рассчитывают на прочность, жесткость и колебания. Основной расчетной нагрузкой являются моменты Т и М , вызывающие кручение и изгиб. Влияние сжимающих или растягивающих сил обычно мало и не учитывается. Расчет осей является частным случаем расчета валов при Т = 0.
Для выполнения расчета вала необходимо знать его конструкцию (места приложения нагрузки, расположения опор и т.п) В то же время разработка конструкции вала невозможна без хотя бы приближенной оценки его диаметра. На практике обычно используют следующий порядок проектного расчета вала:
Предварительно оценивают средний диаметр вала из расчета на кручение при пониженных допускаемых напряжениях :
d =3√ (T/ (0,2[ζ]))
Обычно принимают [ζ] = ( 20 … 30 )МПа
Требуемый диаметр вала:
d ≥ 3√(65∙103 / (0,2 ∙ 25)) = 23,513мм
Окончательный диаметр вала будет установлен при расчете шлицевого соединения.
Проектный расчет вала.
d≥23,513мм
4.3. РАСЧЕТ ШЛИЦЕВОГО СОЕДИНЕНИЯ.
Задаемся для шлицевого соединения прямоугольного профиля числом зубьев z = 36 ,так как наименьший диаметр вала должен быть больше или в крайнем случае равен 23,513мм; то номинальный внутренний диаметр отверстия в ступице должен быть около 24мм , а средний или делительный диаметры шлицов будут лежать в пределах dср≈dδ=24,5 … 25,5мм при модулях m=0,2 … 1,5мм принятых для шлицев треугольного профиля по нормам автомобильной и тракторной промышленности.
Требуемый модуль для шлицев
m=dδ /z=(24,5 … 25,5)/36=0,68 … 0,708мм
Принимаем для шлицевого соединения стандартный модуль m=0,7мм. Номинальный делительный диаметр шлицов – зубьев треугольного профиля
dδ =m·z=0,7 · 36=25,2
Угол впадин по нормам принимают dαb=90º ,так как передача вращения осуществляется боковыми гранями шлицов ,по которым происходит центрирование соединения, угол вершин зубьев по нормалям следует принять 2α=80º .
Шаг зацепления:
Pt= π·m = 3.14·0,7 =2,199мм
Толщина зуба (шлица) по делительному диаметру при 2α=80º
St=(Pt ·2α)/(2αb+2α)=(2,199 ·80º)/(90º+80º)=1,0218мм
Ширину впадины втулки по делительному диаметру
Lt= PT- St = 2,199 – 1,0218 = 1.177мм
Диаметр впадин зубьев во втулке
dа2=dδ+1,6m=25,2+(1,6 · 0,7)=26.31мм
Диаметр вершин зубьев вала
da1=dδ +1,25m=25,2+(1,25·0,7)=26,05мм
Радиальный зазор между вершиной зуба и впадиной втулки
c1=0,5(dа2-dа1)=0,5(21,31-26,05)=0,13мм
Требование c≤0,2m=0,2·0,7=0,14мм выполнено.
Диаметр впадин зубьев (шлицов) у вала
df z=dδ-1,8m=25,2-1,8∙0,7=23,917мм
Диаметр вершин зубьев у втулки
df 2=dδ-1,5m=25,2-1,5∙0,7=24,15мм
Радиальный зазор между вершенной зуба втулки и впадиной вала
c2=0,5(df 2-df 1)=0,5(24,15-23,9)=0,125мм
Уточняем средний расчетный диаметр зуба
dср=(da1 -da2)/2=(26,05+24,15)/2=25,1мм
Длина поверхности контакта зубьев принимаем равной длине ступицы втулки
lст=31мм
За расчетную длину принимаем
lр=31мм
Шлицевые соединения выходят из строя из за повреждений рабочих поверхностей : износа, смятия, заедания. Основными напряжениями, разрушающими шлицы являются напряжения смятия. Условием прочности соединения будет
ссм ≤ [σсм]
Допускаемые напряжения [σсм] зависят от материалов вала и втулки, их термической обработки
Расчет шлицевых соединений проводят обычно как проверочный.
σсм=2Т/(de∙z∙h∙L∙ψ)
Где h – высота поверхности шлицев.
h = (dа1 - df2)/2 = (26,05 – 24,15)/2 = 0,9мм ,
ψ – коэффициент, учитывающий неравномерность распределения нагрузки между шлицами
ψ = 0,7 … 0,8
Длярасчетов принимаем среднее значение ψ = 0,75
σсм = (2 ∙65∙103)/(25,1∙36∙0,95∙30∙0,75) = 67,3 МПа
Условие прочности выполнено:
σсм<[σсм] = 110МПа
Расчет шлицевых соединений регламентирован ГОСТ 21425 – 75 , Которым следует пользоваться при более точных расчетах.
4.4. ВЫБОР МАТЕРИАЛОВ
ДЛЯ ИЗГОТОВЛЕНИЯ ВОЗВРАТНЫХ ПРУЖИН.
Материал для пружин должен иметь высокие и стабильные свойства. Делать пружины из материалов низкой прочности нецелесообразно. Масса геометрически подобных пружин при заданной нагрузке и упругом закручивании обратно пропорциональна квадрату допускаемого напряжения. Это связано с тем, что пружины из менее прочного материала в целях сохранения заданной жесткости приходится делать повышенных диаметров и, следовательно, витки их нагружены большими моментами, чем пружины из более прочных материалов. Эффективность применения высокопрочных материалов для пружин связана также с меньшей концентрацией напряжений в пружинах, чем в деталях с различными переходами, и меньшими размерами сечений витков.