Смекни!
smekni.com

Петербургское Метро (стр. 3 из 6)

8 апреля 1974 года при бурении передовых разведочных скважин в нижнем тоннеле была обнаружена незамерзшая порода, из которой поступала вода. Затем в забое появились трещины, через которые начал прорываться плывун. Вскоре и верхние тоннель стал заполнятся. Аварийные затворы из-за быстрого поступления плывуна полностью закрыть не удалось. Плывун затопил оба тоннеля на целый километр, разморозил значительную часть льдогрунтового массива. Для того чтобы остановить плывун, у станции “Лесная” в тоннелях была сооружена перемычка и произведена закачка воды в аварийные участки.

В решении комплекса проблем, возникших при ликвидации аварии, приняли участие многие научно-исследовательские институты Ленинграда. Впервые в мировой практики был применен жидкий азот, имеющий температуру минус 196°, это значительно ускорило все работы по замораживанию, в том числе и по созданию льдогрунтовой перемычки. Помимо жидкого азота был применен ряд новых материалов и приборов. Например: полимербетон с добавлением пластифицирующей смолы, схватывающихся при температурах, близких к 0°; полимербетонные растворы для инъекций в железобетонную рубашку, чтобы понизить ее водонепроницаемость: система межскважинного акустического просвечивания, сигнализирующая о наличии непромороженных зон.

В ноябре 1975 года была произведена сбойка верхнего и нижнего тоннелей, а через месяц весь участок от “Площади Ленина” до “Академической” сдан в эксплуатацию с оценкой отлично. Ни одна станция метро не сооружается без тщательного изучения геологических и иных условий ее нахождения, без тщательного анализа расчета конструкций станций и тоннелей.

Расчет конструкций Ленинградского М. делался с учетом многолетнего опыта московских метросроителей. Но в Москве М. прокладывалось в основном в известняках, так же как железнодорожные тоннели строятся обычно в скальных грунтах. А вот тоннелей, которые надо рассчитывать одновременно и на скальною породу и на глину, еще не строили. Пришлось тщательно изучать свойства кембрийских глин и делать новые расчеты. Так, в Москве чугунные тюбинги перегонных тоннелей делались одинаковыми по прочности. Исследования показали, что кембрийские глины будут давить на тюбинговое кольцо тоннеля гораздо сильнее с верху. Значит кольцо должно быть более сильней на верху и может быть облегченны с баков — то есть можно применить так называемою конструкцию переменой жидкости. На рубеже 1959 — 1960 годов при кафедре тоннелей и метрополитенов Ленинградского ордена Ленина института инженеров железнодорожного транспорта имени В. Н, Образцова была создана лаборатория моделирования тоннелей. В ней на небольших моделях создаются условия, в которых будут действовать подземные сооружения. Первой была построена конструкция станции “Парк Победы”, а затем и все строившееся позднее. В ликвидации последствий аварии у станции “Площадь Мужества” кафедра тоннелей и метрополитенов Института инженеров железнодорожного транспорта принимала самое активное участие. Испытание модели этого участка позволило выбрать лучшею конструкцию укрепления тоннеля.

Когда-то работы в тоннелях велись с помощью отбойных молотков, а погрузка породы в вагонетки осуществлялось в ручную — лопатами. Сооружение тоннелей в Ленинграде уже на первой поре стало механизированным. В Ленинграде был спроектирован механизированный проходческий щит ленинградского типа. За проходческим щитом двигается второй механизм тюбингоукладчик, или эректор. Своими стальными “руками”, которые могут двигаться по окружности, радиусу и вдоль тоннеля, он доставляет и размещает тюбинги в любое место монтируемое обделки тоннеля. Для ускорения строительства тоннели между станциями ведут с двух сторон — навстречу друг другу. Прокладку трассы и точность стыковки обеспечивают маркшейдеры — подземные геодезисты.

Донецкие маркшейдеры, участвовавшие в прокладке первой очереди московского М. , работали очень осторожно. Они обязательно сперва проходили штольней малого диаметра. В случае ошибки ее легко было поправить при расширении тоннеля до полного профиля. Теперь, при проходке тоннелей механизированными щитами, дающими готовый тоннель с уже установленными тюбингами, расчеты маркшейдеров должны быть особенно точными. И действительно, встречные тоннели соединяются с точностью до двух сантиметров. Этому помогают и созданные в Ленинграде щитовые приборы, коренным образом улучшившие определений положений щита. Маркшейдеры первыми приходят на строительство М. :они переносят проект в натуру. Разбивка всей трассы сначала производится на поверхности земли. По этой разбивке задаются все центры вертикальных шахт, наклонных, эскалаторных ходов. Затем крайние точки разбивки через вертикальные шахты с помощью отвесов переносят под землю. От этих точек, под землей, задаются направление горизонтальных штолен со всеми их поворотами и уклонами.

По этой разбивке маркшейдеры руководят включением домкратов — направлением движения проходческого щита.

Когда строили участок Кировско-Выборгской линии от “Площади Восстания” до “Площади Ленина”, пришлось первый раз пройти двумя тоннелями под Невой. Осуществилась мечта русского изобретателя‑самоучки Мещанина Торгованова, в 1820 году представившего проект “проезда с Адмиралтейской стороны на Васильевский остров под Невою, не мало не мешая оной течению”. Царскому правительству осуществить этот проект было не под силу.

При прокладке тоннеля между станциями “Невский Проспект” и “Горьковская” под Невой проходчики наткнулись на узкую, ранее не выявленную впадину в дне Невы. Пришлось тоннель заглублять с максимально допустимым уклоном . Теперь на этом участке пассажиры первого вагона оказываются на шесть метров ниже едущих в хвостовом. Хотя от впадин в дне реки стараются уйти поглубже, для полной безопасности работы ведутся кессонным способом. При подходе к реке тоннель герметически перегораживается, и в подречную часть нагнетается воздух. Повышенное давление препятствует проникновение воды в тоннель. Но к работе в условиях повышенного давления организм человека должен привыкнуть, поэтому рабочие в течении одного-двух часов “шлюзуются” в специальных камерах, где давление постепенно повышается от атмосферного до кессонного. Тоже самое, только в обратном порядке, совершается и при выходе.

Строительство станций метрополитена

в общем

Особое положение в комплексе сооружений М. занимают станции, вестибюли и пересадочные узлы, непосредственно связанные с обслуживанием пассажиров. Наряды с выполнением своих основных функций они должны обеспечивать безопасность пассажиров, обладать определенными удобствами (в том числе максимально короткий путь от поверхности к перронным залам и в обратном направлении, чистота и оптимальная температура воздуха и др.). В местах пересечений или соприкосновений различных линий М. сооружаются пересадочные (узловые) станции. Их перронные залы соединяются лестницами и коридорами (узлы коридорного типа) или только лестницами либо эскалаторами (узлы двухъярусного — так называемого башенного типа), а иногда располагаются в одном уровне, с пересадкой через платформу непосредственно из вагона в вагон (узлы объединенного типа). В России станции М. и переходы оборудуются эскалаторами для подъема пассажиров на высоту более 5м. При высоте более 7м. предусматриваются эскалаторы и для спуска пассажиров. В зарубежной практике иногда применяют подъемники лифтового типа с кабинами вместимостью до 130 человек.

Станции мелкого заложения сооружаются главным образом со вскрытием поверхности. Для их перекрытия используются стоечно‑балочные конструкции с 1, 2 или несколькими рядами опор или сводчатые конструкции, рассчитанные на нагрузки от массы земли толщиной 1-2,5 м. и движущегося по поверхности уличного транспорта.

Станции глубокого заложения обычно представляют собой 2, 3 или нескольких тоннелей с монолитной или сборной обделкой, выдерживающий давление вышележащих пород. Обделка в каждом тоннеле состоит из замкнутых и соединенных между собой колец, образованных чугунными или железобетонными тюбингами. Эти станции подразделяются на пилонные и колонные. В пилонных станциях М. опорами перекрытия служат массивные пилоны, образованные 2 — 4 или большими количеством тюбинговых колец, в колонных — стальные или железобетонные колонны. Строительство колонных станций дороже и сложнее строительства пилонных, но более открытое внутреннее пространство колонных станций удобнее для движения массовых потоков пассажиров и облегчает их зрительную ориентацию. В основном в периферийных районах городов, где проходят наземные линии, сооружают станции в виде павильонов или с открытыми платформами, защищенными легкими навесами и козырьками. Тип станций во многом зависит от конкретных условий строительства (особенно от гидрогеологической обстановки ).

Первые станции лондонского М. сооружавшиеся под проезжей частью улиц, имели сводчатые перекрытия из кирпича с вентиляционными решетками, устроенными непосредственно на тротуарах. Поездные пути располагались по центральной продольной оси станции М., по сторонам путевого полотна находились две боковые пассажирские платформы ( этот тип станций с узкими, шириной 1,5 — 3 м , боковыми платформами, простой по устройству, но не достаточно удобный пассажиров, получил распространение в М. Западной Европы и Америки ). В дальнейшем при строительстве в Лондоне станции М. глубокого заложения стали применять ограждающие конструкции кольцевого сечения из чугунных тюбингов, облицованные керамической плиткой. Большинство станций парижского М. имеет одинаковую односводчатую конструкцию, с центральным расположением путей и боковыми пассажирскими платформами. После постройки станций берлинского М. с пассажирской платформой так называемого островного типа (расположенной между путями). Преимуществами такой станции являются удобное расположение входов и выходов со стороны концов платформы, более полное использование всей площади платформы, легкость ориентировки пассажиров и возможность изменения направления поездки без перехода через пути.