Определяем количество воздуха, приходящееся на один воздухораспределитель,
L0=LСУМ/Z; где
LСУМ – общее количество приточного воздуха, подаваемого через плафоны.
L0=17743/10=1774 м3/ч
На основании полученной подачи L0 по табл. 5.17[7] выбираем тип и типоразмер воздухораспределителя (ВДШ-4). Далее находим скорость в его горловине:
JX=k*JДОП=1,4*0,2=0,28 м/с
ХП=НП-hПОТ-hПЛ-hРЗ
ХП=7,4-1-0,5-0,3=4,6 м
м1=0,8; n1=0,65 – по таблице 5.18[4]
F0=L0/3600*5=1774/3600*5=0.085 м2
Принимаем ВДШ-4, F0=0,13 м2Значения коефициентов:
КС=0,25; т.к.
КВЗ=1; т.к l/Xn=5,5/4,6=1,2
КН=1,0; т.к Ar – не ограничен.
т.е. условие JФ<J0 удовлетворено
что удовлетворяет условиям, т.е. < 1°C
7.Аэродинамический расчет воздуховодов
Его проводят с целью определения размеров поперечного сечения участков сети. В системах с механическим побуждением движения воздуха потери давления определяют выбор вентилятора. В этом случае подбор размеров поперечного сечения воздуховодов проводят по допустимым скоростям движения воздуха.
Потери давления DР, Па, на участке воздуховода длиной l определяют по формуле:
DР=Rbl+Z
где R – удельные потери давления на 1м воздуховода, Па/мБ определяются по табл.12.17 [4]
b-коэффициент, учитывающий фактическую шероховатость стенок воздуховода, определяем по табл. 12.14 [4]
Z-потери давления в местных сопротивлениях, Па, определяем по формуле:
Z=Sx×Pg,
Где Pg – динамическое давление воздуха на участке, Па, определяем по табл. 12.17 [4]
Sx - сумма коэффициентов местных сопротивлений.
Аэродинамический расчет состоит их 2 этапов:
1) расчета участков основного направления;
2) увязка ответвлений.
Последовательность расчета.
1. Определяем нашрузки расчетных участков, характеризующихся постоянством расхода воздуха;
2. Выбираем основное направление, для чего выявляем наиболее протяженную цепь участков;
3. Нумеруем участки магистрали и ответвлений, начиная с участка, наиболее удаленного с наибольшим расходом.
4. Размеры сечения воздуховода определяем по формуле
где L –расход воздуха на участке, м3/ч
Jр- рекомендуемая скорость движения воздуха м/с, определяем по табл. 11.3 [3]
5. Зная ориентировочную площадь сечения, определяем стандартный воздуховод и расчитываем фактическую скорость воздуха:
6. Определяем R,Pg по табл. 12.17 [4].
7. Определяем коэффициенты местных сопротивлений.
8.
Общие потери давления в системе равны сумме потерь давления в воздуховодах по магистрали и в вентиляционном оборужовании:DP=S(Rbl+Z)маг+DPоб
9. Методика расчета ответвлений аналогична.
После их расчета проводят неувязку.
Результаты аэродинамического расчета воздуховодов сводим в табл 8.1.
Pg=g*h(rн-rв)=9.81*4.7(1.27-1.2)=3.25 Па
№ | L | l | р-ры | J | b | R | Rlb | Sx | Pg | Z | Rlb+ | SRlb | прим | |
уч. | а х в | dэ | Z | +Z | ||||||||||
Магистраль | ||||||||||||||
1 | 500 | 1.85 | 400x400 | 400 | 0.8 | 1.4 | 0.02 | 0.05 | 2.97 | 0.391 | 1.16 | 1.21 | ||
2 | 500 | 1.5 | 420x350 | 0.94 | 1.21 | 0.03 | 0.054 | 0.55 | 0.495 | 0.27 | 0.324 | |||
3 | 1000 | 5 | 520x550 | 0.97 | 1.23 | 0.02 | 0.132 | 0.85 | 0.612 | 0.52 | 0.643 | 2.177 | ||
4 | 12113 | 2.43 | 520x550 | 1.2 | 1.25 | 0.03 | 0.038 | 1.15 | 0.881 | 0.93 | 0.968 | 3.146 | ||
Ответвления | ||||||||||||||
5 | 243 | 1.85 | 270x270 | 0.92 | 1.43 | 0.04 | 0.06 | 2.85 | 0.495 | 1.41 | 1.47 | |||
6 | 243 | 7 | 220x360 | 0.9 | 1.21 | 0.04 | 0.34 | 1.1 | 0.495 | 0.54 | 0.88 | 2.35 | ||
7 | 500 | 1.85 | 400x400 | 400 | 0.8 | 1.4 | 0.02 | 0.05 | 3.45 | 0.391 | 1.35 | 1.4 |
Участок №1
Решетка x=2
Боковой вход x=0.6
Отвод 900x=0.37
Участок №2
Тройник x=0.25
Участок №3
Тройник x=0.85
Участок №4
Зонт x=01.15
Невязка=(DРотв5+6 - DРуч.м. 1+2+3)/DРуч.ш. 1+2+3*100%=
=(2.35-2.177)/2.177*100%=7.9% < 15% - условие выполнено
Невязка=(DРотв7 - DРуч.м. 1+2)/DРуч.м. 1+2*100%=
=(1.4-1.534)/1.534*100%=-8.7% > -15% - условие выполнено
Таблица 9.1
Воздухораспределительные устройства
Номерпомещения | Ln | Типрешетки | Колличество | x |
Подбор приточных решеток | ||||
2 | 1176 | Р-200 | 4 | 2 |
5 | 180 | Р-200 | 1 | 2 |
6 | 288 | Р-200 | 1 | 2 |
7 | 504 | Р-200 | 2 | 2 |
9 | 1000 | Р-200 | 4 | 2 |
10 | 486 | Р-200 | 2 | 2 |
Подбор вытяжных решеток | ||||
1 | 5743 | Р-200 | 20 | 2 |
2 | 101 | Р-150 | 1 | 2 |
3 | 400 | Р-150 | 8 | 2 |
4 | 540 | Р-200 | 2 | 2 |
5 | 180 | Р-200 | 1 | 2 |
6 | 432 | Р-200 | 2 | 2 |
7 | 630 | Р-200 | 3 | 2 |
8 | 108 | Р-150 | 1 | 2 |
9 | 1000 | Р-200 | 4 | 2 |
10 | 243 | Р-200 | 1 | 2 |
Для подогрева приточного воздуха используем калориферы, которые, как правило, обогреваются водой. Приточный воздух необходимо нагревать от температуры наружного воздуха tн=-25°С до температуры на 1¸1.5 25°С меньешй температуры притока (этот запас компенсируется нагревом воздуха в воздуховодах), т.е. до tн=15-1=14°С
Колличество нагреваемого воздуха составляем 21377 м3/ч.
Подбираем калорифер по следующей методике:
1. Задаемся массовой скоростью движения теплоносителя Jr=8 кг/(м2с)
2. Расчитываем ориентировочную площадь живого сечения калориферной установки.
fкуор=Ln*rн/(3600*Jr), м2
где Ln – расход нагреваемого воздуха, м3/ч
rн – плотность воздуха, кг/м3
fкуор=21377*1.332/(3600*10)=0.79 м2
3. По fкуор и табл. 4.37 [5] принимаем калорифер типа КВС-9п, для которого:
площадь поверхности нагрева Fk=19,56м2, площадь живого сечение по воздуху fk=0.237622м2, по теплоносителю fтр=0.001159м2.
4. Расчитаем необходимое количество калориферов, установленных параллельно по воздуху:
m||в=fкуор/fk=0.79/0.237622=3,3. Принимаем m||в=3 шт
5. Рассчитаем действительную скорость движения воздуха.
(Jr)д=Ln*rн/(3600*fk*m||в)=21377-1.332/(3600*0.237622)=8.35 кг/м2с
6. Определяем расход тепла на нагрев воздуха, Вт/ч:
Qк.у.=0.278*Ln*Cv*(tk-tнб)=0.278*21377*1.2(15-(-8))=164021 Вт
7. Рассчитаем колличество теплоносителя, проходящее через калориферную установку.
W=(Qк.у*3,6)/rв*Cв*(tг-to), m3/ч
W=(164021*3.6)/4.19*1000*(130-70)=2.82 m3/ч
8. Определяем действитеельную скорость воды в трубках калорифера.
v=W/(3600*fтр*n||m), m/c
v=2.82/(3600*0.001159*3)=0.23, m/c
9. По табл. 4.40 [5] определяем коеффициент теплоотдачи
К=33.5 Вт/м2 0с
10. Определяем требуемую поверхность нагрева калориферной установки
Fкутр=Qку/(К(tср т – tср в), м2
Fкутр=164021/(33.5*(130+70/2)-(15-8/2))=50.73 м2
11. Nk=Fкутр/Fку=50.73/19.56=2.89. Принимаем 3 шт
12. Зная общее колличество калориферов, находим колилчество калориферов последовательно по воздуху
nпосл в=Nk/m||в=3/3=1 шт
13. Определяем запас поверхности нагрева
Запас=(Fk-Fкутр)/Fкутр*100%=10¸20%
Запас=(15.86-50.73)/50.73=15% <=20%
Условие выполнено
14. Определим аэродинамическое сопротивление калориферной установки по табл. 4.40 [5]
Pк=65.1 па
В помещения административно-бытовых зданий борьба с пылью осуществляется путем предотвращения попадания её извне и удаление пыли, образующейся в самих помещениях.