Смекни!
smekni.com

Принципы динамической организации (стр. 2 из 3)

В термодинамике . Термодинамическая система , уравновешенная в изотермических условиях (газ в цилиндре под поршнем , например , или чёрное излучение в закрытой полости) , сохраняет (если пренебречь исчезающими малыми флюктуациями) равновесное состояние не в силу отсутствия взаимодействия , а в результате тождественного обмена частицами , излучением и пр.

В микромире . Микрочастицы (молекулы , атомы , ядра и элементарные частицы) сохраняют основное стационарное состояние неизменным , если отсутствует возмущающее воздействие извне в виде фотонов и других частиц . Это состояние сохраняется также в результате (в конечном итоге) акта присоединения - отчуждения фотона , например , ибо этот акт является тождественным обменом в его среднем значении в системе центра масс (фотон присоединяется , фотон отчуждается - атом возвращается в исходное основное состояние) . Хотя в процессе обмена состояние атома изменялось , но в конце этих событий , когда обмен за счёт обратимости микропроцессов оказался сбалансированным в тождественный , атом вновь оказался в том же исходном основном состоянии .

Рассмотрим предельный частный случай тождественного внешнего обмена , когда все его компоненты равны нулю (полный реальный обмен в нуль не обращается из-за того , что всякая материальная система обладает внутренним движением , то есть внутренним обменом , не обращающимся в нуль) .

В этом случае меняется формулировка второго принципа динамической организации : замкнутая система , осуществляющая тождественный внутренний обмен , сохраняет состояние неизменным (замкнутость системы означает отсутствие внешнего обмена) .

В механике материальной точки , не имеющей внутреннего состояния (можно сказать , обладающей тождественно нулевым внутренним обменом - идеализация) , последняя формулировка по содержанию совпадает с законом инерции : отсутствие сил - отсутствие обмена - отсутствие изменения состояния .

В термодинамике этот случай характеризуется равновесием замкнутой системы , а формулировка второго принципа динамической организации воспроизводит постулат о сохранении равновесия .

По отношению к микросистемам эта формулировка совпадает с известным в квантовой механике положением об устойчивости основного квантового состояния .

Таким образом второй принцип является обобщением трёх положений из различных областей (или сторон) природы : закона инерции - из механики ; постулата о сохранении равновесия замкнутой макросистемы - из термодинамики ; постулата об устойчивости стационарности основного состояния микросистем - из квантовой механики . Поэтому второй принцип динамической организации может быть назван обобщённым законом инерции .

Принцип третий . Динамическое состояние системы изменяется только в результате нетождественного (внутреннего и внешнего , внутреннего или внешнего) обмена движущейся материи .

Простейший случай - механика , здесь динамическое состояние свободного тела изменяется лишь при отличной от нуля производной импульса оп времени (равной действующей силе) , то есть при появлении ускорения , но при ускоренном движении наращиваются (или убывают) значения таких величин как энергия , масса , импульс , которые являются неотъемлемыми характеристиками субстанциональной стороны материи .[2] Поэтому при ускоренном движении тел можно говорить о накоплении материи как субстанции , которое является прямым изменением состояния тела , с одной стороны , а с другой - прямым результатом нетождественности обмена на входе над мощностью обмена на выходе или наоборот . Из этого следует , что третий принцип динамической организации в механике является обобщением второго закона динамики Ньютона .

В термодинамике макросистема изменяет состояние либо в результате присоединения (отчуждения) движущейся материи в различных формах (нетождественный внешний обмен) , либо в результате перераспределения движущейся материи внутри системы , через изменение её внутренней структуры (нетождественный внутренний обмен) . То же самое справедливо по отношению к микросистемам , в которых состояние изменяется либо вследствие распада , либо через поглощение других частиц , то есть в следствие нетождественного обмена .

Если разделить всю совокупность возможных изменений состояний на два класса - приближение к равновесию (к стабильному тождественному внутреннему обмену) и удаление от него , то можно сказать следующее . К равновесному состоянию система стремится как в условиях равновесной среды , то есть при тождественном внешнем обмене , так и случае отсутствующего внешнего обмена (при тождественно нулевом внешнем обмене) в результате нетождественного внутреннего обмена . Но выйти из равновесного состояния , характеризующегося стационарным тождественным обменом (микросистема в основном состоянии , уравновешенная макросистема) , в состояние неравновесное система внутренне не способна в отсутствие нетождественного внешнего обмена . В микросистемах возбуждение возможно лишь в результате положительного внешнего обмена (превышение мощности обмена на входе над мощностью обмена на выходе) , то есть за счёт поглощения других частиц . В макросистемах переход из равновесного в неравновесное состояние возможен как при положительном , так и при отрицательном внешнем обмене .

Таким образом , внутренний и внешний нетождественный материи , осуществляемый системой , является движущей силой , обусловливающей все изменения её состояния .

В полном объёме системы ведущая роль может принадлежать как внешней его стороне (внешнему обмену) , так и внутренней (внутреннему обмену) . Если учитывать только изученные естествознанием формы движения материи , то можно сказать , что в неживой природе судьба всякой конечной системы определяется внешним обменом , регулируемым окружающей средой . Поэтому целостная (конечная ограниченная ) система в своём внутреннем состоянии неотступно следует за изменениями окружающей среды , то есть уравновешивается с последней . Можно указать на радиоактивный распад (или высвечивание микросистемы) , в котором система переходит к стабильному равновесию через нетождественный обмен , источником которого является якобы обмен внутренний , то есть сама система . В действительности это не совсем верно . Нагретое тело в холодном термостате то уравновешивается через излучение , расширение и т. д. , то есть под действием якобы внутренних сил (внутреннего обмена) , но ведущая роль остаётся всё же за термостатом . Расширение такой системы неукоснительно следует за убылью возмущающих факторов со стороны среды , которой и принадлежит ведущая роль . Следовательно , движущей силой таких процессов в неживой природе является внешний обмен , регулируемый окружением .

В бытии объектов живой природы , при условии выполнения некоторых необходимых предпосылок со стороны внешнего обмена , обеспечивающих возможность реализации системы (организма) , ведущая роль принадлежит внутреннему обмену , регулируемому системой . Только этим можно объяснить этот общеизвестный факт , что из двух систем - камня и зерна (семени растения) только вторая внутренне способна и реализует в своём развитии микроструктурную неуравновешенность окружающей среды , выходя в этом процессе за пределы термодинамической формы движения , изменяя своё внутренне состояние в строну убыли энтропии , то есть с наращиванием внутренней неуравновешенности , тогда как первая система (камень) уравновешивается с окружающей средой в пределах термодинамических соотношений . В условиях термодинамически уравновешенной окружающей среды (по температуре , давлению и химическому потенциалу частиц) и камень и зерно ведут себя одинаково - уравновешиваются .

В частном случае тождественно нулевого внешнего обмена при тождественном внутреннем обмене системы третий принцип динамической организации обращается во второй (в обобщённый закон инерции) подобно тому , как второй закон динамики Ньютона в предельном случае равных нулю действующих сил переходит в закон инерции . Этот переход , однако , имеет чисто формальный смысл . В методологическом же отношении обобщённый закон инерции (и закон инерции в механике) сохраняет своё значение - его содержание независимо . Ведь прежде , чем искать причину изменения состояния (движущую силу) , нужно быть уверенным в том , что система обладает устойчивостью движения , свойством сохранения состояния в отсутствие внешний возмущений . Следовательно , можно сказать , по-видимому , что закон инерции является первым звеном в концепции причинности .

Принцип четвёртый . Нетождественный обмен движущейся материи , осуществляемый системой , с необходимостью изменяет её состояние .

В микромире нетождественный обмен , как процесс присоединения или отчуждения движущейся материи в конкретных формах (фотонов , электронов , позитронов и др.) , по данным квантовой механики , атомной и ядерной физики и физики элементарных частиц , действительно имеет необходимое следствие в изменении состояния микросистемы . Механика , термодинамика и электродинамика показывают , что в макромире также имеет место необходимая взаимосвязь между нетождественным обменом системы и изменением её состояния . Таким образом , как в микромире , так и в макромире третий принцип динамической организации обратим .

Суть четвёртого принципа в том , что каждый акт нетождественного обмена выступает как процесс обоюдного изменения состояния обоих участвующих в нём агентов : система в нетождественном обмене перерабатывает (изменяет состояние) присоединяемых (отчуждаемых) материальных объектов , а эти объекты , в свою очередь , изменяют состояние системы . Другими словами - действие равно противодействию . Протон , присоединяющий электрон , изменяет динамическое состояние последнего , превращая его из свободной и относительно независимой целостной системы в подчиненную часть атома водорода . Вторая сторона этого акта обмена - в изменении состояния самого протона , который обращается в атомное ядро . В организме или обществе непрерывный процесс изменения состояния перерабатываемых в обмене веществ есть в то же время процесс изменения собственной структуры организма или общества .