Смекни!
smekni.com

Полупроводниковые датчики температуры (стр. 3 из 4)

В настоящее время в области практического использования никакой полупроводниковый материал не может конкурировать с кремнием по степени изученности характеристик и, особенно, по степени разработанности и осво­ен­ности технологии изготовления. Поскольку кремний имеет достаточно широкую (Ey@ 1,17 эВ [11]) зону проводимости и, кроме того, интенсивное окисление поверхности кремния происходит при температурах, больших 1000 К, то на его основе могут создаваться высокотемпературные термодатчики. На основе моно­кристаллического кремния можно изготавливать термодатчики как с положи­тельным, так и с отрицательным значением ТКС в области средних температур. Отрицательное значение ТКС получают при легировании кремния такими при­месями, ка золото и железо, которые создают в запрещенной зоне “глубокие “ уровни, т.е. уровни, энергия активации которых близка к 0,5.Ey[13].

На основе кремния, легированного золотом, разработан термодатчик с отрицательным ТКС для измерения температуры поверхности с рабочим диапа­зоном (273…330) К [2,14]. Температурный коэффициент такого термодатчика изменяется от –8%/К при 273 К до –(2…3)%/К при 330 К. Чувствительный элемент 1 термодатчика (рис.3) в виде параллелепипеда из монокристаллического кремния нижней широкой гранью прикреплен к контактной площадке 3, нане­сен­ной на пластину из монокристаллического сапфира 2. Второй контакт находится на верхней грани чувствительного элемента и соединен золотыми микропро­вод­никами 5 с другой контактной площадкой 4. Сверху чувствительный элемент залит смолой 6. Малый рабочий диапазон таких термодатчиков объясняется тем, что с ростом температуры ТКС уменьшается пропорционально величине 1/Т2. Поскольку значение номинального сопротивления (Rн) термодатчика зависит от размеров чувствительного элемента, а при разделении пластины кремния на отдельные чувствительные элементы невозможно добиться их полной иден­тичности, то разброс значений Rн в партии составляет »20%. Кроме того, наб­людается разброс значений ТКС в пределах 5%, обусловленный различной сте­пенью легирования кремния в процессе производства. Большое значение пока­зателя тепловой инерции разработанного термодатчика (»10 с) ограничивает его использование в динамике.

Расширить измеряемый температурный диапазон можно, если включить параллельно кремниевому терморезистору пассивный резистор (независящий от температуры) при питании схемы постоянным током или последовательно – при питании схемы от источника постоянного напряжения. НПО Измерительной техники г.Королев разработан кремниевый датчик ТЭ-260 [2], работающий при температурах от 223 до 523 К.

Положительным значением температурного коэффициента удельного сопротивления в широком диапазоне температур обладает кремний, легиро­ван­ный примесями с малой энергией активации. На рис.4 показаны температурные зависимости удельного сопротивления кремния, легированного бором и фос­фо­ром, с различной концентрацией носителей тока [15]. Видно, что область собст­венной проводимости кремния с концентрацией носителей тока p, n@ 1020 м-3 начинается при температурах Т>450 К, а кремния с p, n @ 1023 м-3 – при Т>600 К. При меньших температурах и соответствующей концентрации носителей тока

Рис.3. Схема устройства кремниевого термодатчика с отрицательным ТКС.

1 – кремниевый чувствительный элемент;

2 – пластина из сапфира;

3, 4 – металлизированные контактные площадки;

5 – микропроводник;

6 – смола;

7 – выводы.

Рис. 4. Температурные зависимости удельного сопротивления кремния n- и

p-типов проводимости.

Концентрация носителей тока, м-3:

1 – 1020; 2 – 1021; 3 – 1022; 4 – 1023.

температурный коэффициент удельного сопротивления имеет положительное значение.

На базе кремниевых чувствительных элементов с положительным ТКС рядом зарубежных фирм (Volvo, Siemens (Германия), Philips (Нидерланды), ITT Components Group (Великобритания), Rodan Industries Inc, Texas Instruments (США) и др. разработано и выпускается серийно большое количество термодат­чиков различного назначения. Чувствительные элементы этих приборов одно­типны и представляют собой кристаллы кремния n-типа проводимости, изготов­ленные в виде брусков или кубиков. Размеры чувствительных элементов могут несколько варьироваться для получения требуемого сопротивления.

Конечные стадии технологического процесса изготовления термодатчиков отличаются у различных фирм и зависят от предпочтительной конфигурации прибора. Общими операциями являются припаивание выводов к контактным поверхностям и герметизация чувствительных элементов смолой или стеклом. В некоторых конструкциях кремниевых датчиков брусок или пластину снабжают механи­ческими контактами, положение которых фиксируют частично расплав­ленной стеклянной трубкой или заливкой смолой. Луженые медные выводы присоеди­няют к торцевым металлическим контактам. На рис.5 показаны различ­ные конструкции таких термодатчиков. Рабочий диапазон датчиков с чувстви­тель­ными элементами на основе кремния n-типа чаще всего составляет интервал от 223 до 423 К. При помещении кремниевых чувствительных элементов в гер­метичный стеклянный корпус некоторым фирмам (Volvo, Philips) удается уве­личить верхний диапазон рабочих температур до 570 К [16,17].

Таким образом, на основе чувствительных элементов, изготовленных из монокристаллического кремния, разработаны и выпускаются серийно термодатчики с широким набором номинальных сопротивлений Rн, работающих в диапазоне температур несколько сотен Кельвина. Для датчиков этого типа харак­терны такие недостатки, как:

- значительный разброс номинальных сопротивлений (5…10)%, выз­ванный разбросом удельного сопротивления и размеров кристалла кремния.

Рис. 5. Конструкции термодатчиков с кремниевыми чувствительными

элементами.

1 – вывод; 2 – смола; 3 – кремниевый чувствительный элемент;

4 – никелевое покрытие; 5 – припой; 6 – стекло;

7 – молибденовый охладитель; 8 – керамика;

9 – золоченый контакт.

Уменьшение разброса значений Rн до (1…2)% достигается лишь разбраковкой чувствительных элементов;

- разброс значений ТКС, обусловленный разбросом степени легирования кремния. Уменьшение разброса значений ТКС ограничено возможностями сов­ременной технологии;

- достаточно большое значение показателя термической инерции из-за необходимости размещения полупроводниковых чувствительных элементов в корпусах для их защиты от окружающей среды и обеспечения электрической изоляции от объекта.

Кроме того, процесс сборки термодатчиков такого типа трудно поддается автоматизации и, как правило, осуществляется с использованием большой доли ручного труда.

4.3. Пленочные полупроводниковые датчики температуры.

Улучшение характеристик полупроводниковых датчиков температуры и упрощение их конструкции может быть достигнуто при использовании чувстви­тельных элементов, изготовленных из тонких пленок полупроводника, нанесен­ного на полупроводниковую или диэлектрическую подложку. Изготовление таких датчиков осуществляется массовыми методами планарной технологии, которые обеспечивают получение значений номинальных сопротивлений с достаточно высокой точностью и, кроме того, позволяют использовать при изготовлении лазерные методы подгонки номинальных сопротивлений.

Основным недостатком датчиков на основе автоэпитаксиальных структур «кремний на кремнии», а также на основе чувствительных элементов с диффу­зи­онными кремниевыми тензорезисторами является низкий верхний предел рабочих температур, что обусловлено резким ухудшением изолирующих свойств p-n пе­рехода при температурах более (410…430) К [18].

Большие возможности по дальнейшему совершенствованию пленочных термодатчиков возникли с появлением в серийном производстве гетероэпитакси­альных структур «кремний на сапфире» (КНС), которые представляют собой тонкую (от долей до нескольких микрометров) пленку монокристаллического кремния, выращенную на подложке из монокристаллического сапфира [19]. Использование структур КНС позволяет создавать термодатчики, характеризу­ющиеся сочетанием достоинств датчиков с монокристаллическими и пленочными кремниевыми чувствительными элементами. Применение монокристаллической пленки кремния для изготовления терморезисторов обеспечивает повышенную стабильность характеристик термодатчиков. Хорошие изолирующие свойства сапфира вплоть до температур около 1300 К позволяют создавать термодатчики, верхний предел рабочих температур которых, в принципе, ограничен только физическими свойствами кремния. Высокий коэффициент теплопроводности сапфира способствует снижению показателя тепловой инерции термодатчика.

В настоящее время на основе чувствительных элементов из КНС-структур разработан ряд термодатчиков. Так датчик температуры ТЭЭ-295, разработанный в НПО измерительной техники г.Королев, работает в диапазоне температур от 73 до 473 К и имеет основную погрешность 0,25% [2].

В Государственном научном центре «НИИТЕПЛОПРИБОР» были раз­ра­ботаны аналогичные датчики с термочувствительными элементами ТЭ-1 и ТЭ-2, работающие в диапазоне температур от 73 до 723 К и имеющие погрешность 0,25% и выходной сигнал (4…20) мА [20]. В этих датчиках линеаризация выход­ного сигнала осуществлялась с помощью одного или двух термонезависимых резисторов, в зависимости от способа питания – от генератора тока или гене­ра­тора напряжения (рис.6).

Для получения унифицированного выходного сигнала использован элек­тронный преобразователь. Структурная электрическая схема датчика с чувстви­тельным элементом модели ТЭ-2 с двумя терморезисторами, в которую включены два термонезависимых резистора, показана на рис.6а. Мостовая схема питается от стабилизированного источника постоянного напряжения 4В. Информативный сигнал в виде разности напряжений DU на измерительной диагонали моста, пропорциональный изменению сопротивлений термочувствительных резисторов, поступает на вход дифференциального усилителя электронного преобразователя датчика и преобразуется в стандартный сигнал постоянного тока (4…20) мА.