Смекни!
smekni.com

Проект водоснабжения с. Бурибай Хайбуллинского района (стр. 7 из 13)

WNa = 24 QNa Жоум/(пр Е”ра6), (21)

WNa = 24 * 46,2111 * 0,35/(2*3118) = 0,6224 м3

Площадь - катионитовых фильтров, м2

FNa = WNa/Hk (22)

где Нк - высота слоя катионита, Нк= 1,5 м [5]

FNa = 0,6224/1,5 = 0,4149 м2

Количество Na -катионитовых фильтров

NNa = FNa/f, (23)

где f- площадь стандартного фильтра заводского изготовления, при

диаметре фильтра 1500 мм, f= 1,77 м2 [5]

NNa = 0,4149/1,77 = 0,234=1

Расход 100% - ной серной кислоты на регенерацию Н-катионитовых фильтров, кг/сут

Pк=Kэ Е”ра6 Hk.fNHnp/1000 (24)

Pк = 0,77* 311,8 * 1,5 "4,77* 0,234 * 2/1000 = 0,298кг/сут

2.8.2 Установка обеззараживания воды

Для обеззараживания воды в проекте применена ультрафиолетовая технология обработки воды. Выбор технологии обусловлен:

Во-первых, с новыми научными проработками проблемы, доказывающими, что ультрафиолетовое излучение может применяться как альтернатива окислительным методам (хлорированию, озонированию) за счёт простоты, безопасности и низких эксплуатационных затрат. К бесспорным достоинствам технологии ультрафиолетового обеззараживания относится отсутствие какого-либо воздействия на химический состав воды, что позволяет решать задачи обеззараживания без образования побочных токсичных продуктов.

Во-вторых, серийный выпуск отечественных установок, отвечающих требованиям международных стандартов и способных обеспечить приемлемые технико-эксплуатационные и экономические показатели позволяет значительно расширить область применения ультрафиолетовой обработки.

В-третьих, появилась возможность обеспечения надёжного санитарно-эпидемиологического контроля за обеззараженной водой, так как в 1998 году были утверждены Методические указания («Санитарный надзор за применением ультрафиолетового излучения в технологии подготовки питьевой воды». № 2.1.4.719-98), в которых впервые установлена доза облучения, а также определены правила эксплуатации и контроля работы ультрафиолетовых установок. Величина дозы облучения впервые утверждена в качестве косвенного показателя достижения бактерицидного эффекта.

Целью расчета установок обеззараживания воды является определение мощности излучения, объема камеры и числа ламп заданной мощности. По расходу воды q4= Qрасч/24=66,4 м3/ч в проекте приняты 1 УДВ 50/70 установок, выпускаемых НПО ПИТ,

Размеры установки 1400 х 1520 х 420 мм мощность 1,8 кВт. Время пребывания воды в камере

t=

(25)

где S - поперечное сечение камеры, S = 5880 см2

L - длина камеры, L= 152 см

пу- число установок, пу= 1

t=25c

t 10 с, что удовлетворяет требованиям [5]

t=

=48/49 c

Количество ламп

n=

(26)

где NH - требуемая мощность, N„ = 1,8 кВт [5]

Nn - единичная паспортная мощность лампы,

Nn=0,6KBm

n=

=3

Потери напора в бактерицидной установке

h6 = 0,000022 (g4/ny)2 0,4м (27)

h6 = 0,000022 (66,3/З)2 = 0,01м

2.9 Расчет водозаборных сооружений

Проверочный расчет скважин. Дебит скважины, м3/сут

Qскв=qуд*S*86,4 (28)

где qyd - удельный дебит, qyd = 3,47 а/с

S - понижение уровня, S = 1,5 м

Qcm=449,7 м3/сут

Потребное количество скважин

п= 1591,2/449,7 4скв.

С учетом перспектив развития с-Бурибай потребуется расширение водозабора до 5 скважин (4 рабочих и 1 резервная)

2.10 Подбор насосов

Подача насосов 18,7 м3/ч Требуемый напор, м

Нтр = ZMaKC - Z0H +h6 + hф + hв + h3H (29)

где Zмакс- отметка максимального уровня воды в баке башни, Zмакс=387,59 м

Zqh - отметка оси насосов, Z0H = 306,04 м

hб - потери напора в бактерицидной установке, h6 =0,01 м

hф - потери напора в фильтре, hф= 5,5 м [1]

hв - потери напора в водоводах от скважин до башен,hв=0,11м h3H - запас напора, h3H = 1м

Нтр = 387,59-306,04+ 0,01 +5,5 + 0,11 + 1 = 88,17 м

В скважинах установлены насосы марки 1ЭЦВ6-16-110Г, которые обеспечивают расчетные параметры.


3. Эксплуатационный раздел

3.1 Автоматизация работы насосов

Использование регулируемого электропривода насосных агрегатов в системах коммунального и промышленного водоснабжения в течение последних 5-7 лет явилось предметом пристального внимания со стороны эксплуатирующих организаций. Стало очевидно, что регулирование скорости рабочего колеса насосов позволяет существенно повысить энергетические показатели установок, получить значительную экономию электроэнергии, и сократить потери воды за счет исключения избытка давления в гидравлической сети. К настоящему времени в различных городах и регионах России накоплен значительный опыт применения регулируемого электропривода насосных агрегатов для систем холодного и горячего водоснабжения.

В большинстве случаев реализация этого технического мероприятия выполняется в порядке модернизации действующих насосных станций: в цепи питания асинхронного двигателя насоса устанавливаются преобразователи частоты, позволяющие регулировать скорость двигателя. При этом используются преобразователи иностранных компаний: Hitachi (Япония), Mitsubishi (Япония), Dan Foss (Дания) и др., а также разработки отечественных фирм: "Триол", "Приводная техника", ЧЭАЗ, МПП "Цикл" и прочих.

Существующая практика внедрения регулируемого электропривода для насосных агрегатов выявила определенные недостатки в организации и техническом содержании этих работ. Отсутствует единая техническая политика в данной области. Разрозненная поставка насосных агрегатов, коммутирующего электрооборудования, преобразователей частоты и устройств автоматики затрудняет проектирование и внедрение автоматизированных насосных станций. А несогласованность отдельных элементов может снизить эффективность использования регулируемого электропривода насосных агрегатов.

Эффективное использование возможностей регулируемого электропривода и систем автоматики может быть в полной мере реализовано, если это станет делом насосостроительных предприятий. Такая тенденция ярко проявляется в деятельности передовых зарубежных фирм. Указанный тезис может быть обоснован научно-техническими, конструкторскими, проектными, организационными, маркетинговыми и эксплуатационными соображениями.

Насосный агрегат для экономичной эксплуатации должен иметь возможность адаптироваться к условиям и режимам работы конкретного потребителя. Для этого необходимы:

• согласование характеристик насоса с характеристиками гидравлической сети, на которую он работает;

• согласование характеристик параллельно работающих насосов;

• обеспечение переменного режима работы, связанного с регулированием подачи воды в соответствии с нуждами потребителя.

Сегодня избыток давления (напора) большинства насосных станций и гидравлических сетей до 40% превосходит объективно требуемый уровень, что вынуждает гасить избыток напора гидравлическими средствами. Это связано с тем, что при проектировании насосных станций насосы выбираются из стандартного ряда с большим запасом по напору и рассчитываются на максимальный режим расхода. Рабочая зона реального режима работы не всегда совпадает с зоной оптимального КПД насосов.

Если насос работает с постоянной стандартной скоростью вращения, то необходимая адаптация осуществляется внешними гидравлическими средствами, что связано со значительными потерями энергии. Также следует отметить, что при конструировании насоса его характеристики оптимизируются для узкой рабочей области одного номинального режима, которая практически не используется. На практике высокий уровень КПД наших насосов остается невостребованным.

Одним из главных преимуществ использования регулируемого электропривода насосных агрегатов является возможность адаптации его характеристик к характеристикам гидравлической сети посредством выбора рациональной номинальной скорости вращения рабочего колеса, отвечающей основному режиму работы установки. При этом номинальная скорость может быть как выше, так и ниже стандартного значения.

Большинство насосов и насосных станций работает или объективно должны работать с переменной производительностью. Гидравлические способы не экономичны и не дают возможности автоматизированного регулирования.

Второе принципиальное преимущество регулируемого электропривода состоит в том, что если насосный агрегат должен работать с переменной производительностью, то с энергетической точки зрения это наиболее рационально осуществлять путем регулирования скорости рабочего колеса насоса. На основании вышеизложенного можно предложить установочную систему СТЭП.

Станция управления типа СТЭП предназначена для автоматического, дистанционного и ручного управления технологическими электроприводами, насосными агрегатами и вентиляторами с асинхронными электродвигателями с короткозамкнутым ротором, в том числе работающих в системах холодного и горячего водоснабжения, системах отопления и вентиляции. Станция СТЭП может работать как составная часть системы электрооборудования центральных и индивидуальных тепловых пунктов, насосных, котельных, промышленных установок и технологических комплексов.

Станция управления автоматизированным технологическим электроприводом типа СТЭП соответствует ГОСТ Р 51321.1-2000 (МЭК 60439-1-92), ТУ3431-001-78539533-2005 и имеет сертификат соответствия №РОСС RU.ME79.B00915