Смекни!
smekni.com

Портландцемент, его основные свойства и область применения (стр. 1 из 3)

Портландцемент, его основные свойства и область применения.

Портландцемент является важнейшим вяжущим веществом. По производству и применению он занимает первое место среди других вяжущих веществ.

Изобретение портландцемента (1824 г.) связано с именами Егора Герасимовича Челиева — начальника мастерских военно-рабочей бригады н Джозефа Аспдина - каменщика из англий­ского города Лидса.

Портландцемент — гидравлическое вяжущее вещество, твер­деющее в воде и на воздухе. Его получают тонким измельчением обожженной до спекания сырьевой смеси известняка и глины, обеспечивающей преобладание в клинкере силикатов кальция. Спекшаяся сырьевая смесь в виде зерен размером до 40 мм назы­вается клинкером; от качества его зависят важнейшие свойства цемента: прочность и скорость ее нарастания, долговечность, стойкость в различных эксплуатационных условиях.

Для регулирования сроков схватывания в обычных цементах марок 300...500 при помоле к клинкеру добавляют гипс не ме­нее 1,0% и не более 3,5% от массы цемента в пересчете на ан­гидрид серной кислоты SO3, а в цементах высокомарочных и быстротвердеющих - не менее 1,5% и не более 4,0%. Портландцемент выпускают без добавок или с активными минеральными добавками.

ГОСТ 10178—85 предусматривает выпуск трех разновид­ностей портландцемента: ДО - без добавок, Д5 — с введением до 5% активных минеральных добавок всех видов и Д20, в кото­рую разрешается вводить свыше 5%, но не более 20% добавок, в том числе до 10% активных минеральных добавок осадочного происхождения (кроме глиежа) или до 20% доменных и электро-термофосфорных гранулированных шлаков, глиежей и прочих активных минеральных добавок.

К основным свойствам портландцемента можно отнести. Твердение портландцемента — при затворении портландцемента водой образуется пластичное клейкое цементное тесто, постепенно густеющее и переходящее в камневидное состояние.

При твердении портландцемента происходит ряд весьма слож­ных химических и физических явлений. Каждый из минералов при затворении водой реагирует с ней и дает различные новообразо­вания.

Процесс твердения портландцемента в основном определяется гидратацией силикатов, алюминатов и алюмоферрнтов кальция.

Взаимодействие С3S с водой при комнатной температуре проис­ходит при полной гидратации:

2(3CaO-Si02) + 6Н20 = 3CaO.2Si02.3H20 + 3Ca(OH)2

Прочность портландцемента. Согласно ГОСТ 10178—85. прочность портландцемента характеризуют пределами прочности при сжатии и изгибе. Марку цемента устанавливают по пределу прочности при изгибе образцов балочек 40 X 40 X 160 мм и при сжатии их половинок, изготовленных из раствора состава 1:3 (по массе) с нормальным песком при водоцементном отношении 0.4 и испытанных через 28 сут; образцы в течение этого времени хранят во влажных условиях при температуре (20 ± 2)°С. Предел прочности при сжатии в возрасте 28 сут называется активностью цемента.

При благоприятных условиях твердение портландцемента может продолжаться месяцы и даже годы, в 2…3 раза превысив (28-суточную) прочность. Можно считать, что в среднем прирост прочности портландцемента подчиняется логарифмическому закону.

Теоретический предел прочности цементного камня при сжатии очень велик, составляет более 240…340 МПа. Практически при формовании бетонов прессованием была получена прочность 280 МПа и более.

Прочность цементного камня и скорость его твердения зависят от минералогического состава клинкера, тонкости помола цемента, содержания воды, влажности, температуры среды и продолжительности хранения.

Большое влияние на рост прочности цементного камня оказы­вают влажность и температура среды. Скорость химических ре­акций между клинкерными минералами и водой увеличивается с повышением температуры, а также значительно возрастает скорость уплотнения продуктов гидратации цемента. Наиболее быстрый рост прочно­сти цементного камня происходит при пропаривании под давле­нием в автоклавах, при этом бетон через 4...6 ч приобретает марочную прочность.

Твердения портландцементного камня при отрицательных температурах не происходит, так как вода превращается в лед. Однако за счет добавки СаСl2. NaCI или их смеси бетон все же набирает прочность. Хлористые соли являются ускорителями твердения цемента. Однако применение этих солей в количестве более 2% в железобетонных конструкциях не реко­мендуется из-за возможной коррозии арматуры. В последнее время в качестве противоморозной добавки используют нитрит натрия NaNO2.

• Водопотребность цемента определяется количеством воды (% от массы цемента), необходимым для получения теста нормальной густоты. Водопотребность портландцемента 24..28%, при введении активных минеральных добавок осадочного проис­хождения (диатомита, трепела, опоки) водопотребность повыша­ется до З2...37%.

• Продолжительность хранения. Длительное хранение цемента даже в самых благоприятных условиях влечет за собой некоторую потерю его активности. После 3 мес хранения потеря активности цемента может достигать 20%. а через год — 40%. Восстанавливать активность лежалого цемента можно вторичным помолом. Наиболее эффективен вибродомол цемента, в процессе которого повышается тонкость помола цемента, а также происходит обдирка гидратных и инертных оболочек с цементных зерен. Наиболее целесообразным методом предотвращения потери активности це­мента является гидрофобизация.

• Коррозия цементного камня в водных условиях по ряду веду­щих признаков может быть разделена на три вида:

I вид коррозии — разрушение цементного камня в результате растворения и вымывания некоторых его составных частей. Наи­более растворимой является гидроксид кальция, образующийся при гидролизе трехкальциевого силиката.

Мерой зашиты бетона от I вида коррозии являет­ся применение цемента, выделяющего при своем твердении мини­мальное количество свободной Ca(OH)2. Таким цементом является белитовый, содержащий небольшое количество трехкальциевого силиката.

II вид коррозии — разрушение цементного камня водой, со­держащей соли, способные вступать в обменные реакции с со­ставляющими цементного камня. При этом образуются продук­те которые либо легкорастворимы и уносятся фильтрующей через бетон водой, либо выделяются в воде аморфной массы, не обладающей связующими свойствами В результате таких преобразований увеличивается пористость цементного камня и, следовательно, снижается его прочность.

Разру­шение цементного камня под действием воды, содержащей рас­творенные соли, показывают, что основной причиной этого раз­рушения является содержание в цементном камне (бетоне) сво­бодного гидроксида кальция Са(ОН)2. Если же ее связать в другое трудно растворимое соединение, сопротивление бетона коррозии II вида должно возрасти. Это и имеет место при ис­пользовании активных минеральных добавок.

К III виду коррозии относятся процессы, возникающие под действием сульфатов. В порах цементного камня происходит отложение малорастворимых веществ, содержащихся в воде, или продуктов взаимодействия их с составляющими цементной) кам­ня. Их накопление и кристаллизация в порах вызывают значи­тельные растягивающие напряжения в стенках пор и приводят к разрушению цементного камня.

Характерным видом сульфатной коррозии цементного камня является взаимодействие растворенного в воде гипса с трехкаль-циевым гидроалюминатом:

3CaO • AI2O3 • 6H2O+3CaS04 + 25H2O ЗСаО • Аl2О3 • 3CaSO4 • 31Н2О

При этом образуется труднорастворимый гидросульфоалюмнинат кальция, который, кристаллизуясь, поглощает большое коли­чество воды и значительно увеличивается в объеме (примерно в 2.5 раза), что оказывает сильное разрушающее действие на цементный камень.

Исключить или ослабить влияние коррозионных процессов при действии различных вод можно конструктивными мерами, путем улучшения технологии приготовления бетона и применения цементов определенного минералогического состава и необходи­мого содержания активных минеральных добавок.

Используя конструктивные меры, предотвратить действие воды на бетонную конструкцию возможно путем устройства гид­роизоляции, водоотводов и дренажей. Повышение водостойкости бетона технологическими средствами достигается интенсивным уплотнением бетона при укладке или формовании, использова­нием бетонных смесей с минимальным водоцементным отноше­нием, с тщательно подобранным зерновым составом заполнителей.

• Морозостойкость. Совместное попеременное действие воды и мороза влечет за собой разрушение бетонных сооружений. При отрицательных температурах вода, находящаяся в порах цемент­ного камня, превращается в лед, который увеличивается в объ­еме примерно на 9% по сравнению с объемом воды. Лед давит на стенки пор и разрушает их.

Морозостойкость цементного камня зависит от минералогиче­ского состава клинкера, тонкости помола цемента и водоцементного отношения.

Присутствие в цементе в значительном количестве активных минеральных добавок отрицательно влияет на морозостойкость цементного камня вследствие высокой пористости их и низкой морозостойкости продуктов взаимодействия добавок с компонен­там цементного камня. Среди минералов клинкера наименее морозостойким является С3А. поэтому его содержание в цементе для морозостойких бетонов не должно превышать 5..7%.

Увеличение водоцементного отношении понижает морозостой­кость цементного камня вследствие повышении его пористости. Пластифицирующие до­бавки СДБ существенно снижают водопотребность бетонных смесей при сохранении заданной подвижности и тем самым уменьшают пористость цементного камни. Некоторые гндрофоби-зуюшие добавки обладают воздухововлекающей способностью (пузырьки воздуха в бетонной смеси амортизируют давление льда), повышают однородность структуры цементного камня (придают водоотталкивающие свойства) и гидрофобизуют стен­ки пор и капилляров, увеличивая тем самым сопротивляемость цементного камня действию воды.