Смекни!
smekni.com

Шпаргалка по Архитектуре (стр. 5 из 6)

Твердость влияет на обрабатываемость материала. Высокая прочность материала не всегда свидетельствует о его высокой твердо­сти. Например, древесина по прочности при сжатии равна бетону, а по прочности при изгибе превосходит его, однако твердость древесины значительно меньше, чем у бетона.

Характеристика твердости имеет значение при выборе мате­риалов для покрытия полов, лестниц, дорожных покрытий, при опре­делении способа механической обработки лицевой поверхности мате­риалов.

Истираемость свойство материалов уменьшаться в объеме и массе под действием истирающих усилий. Сопротивление истиранию определяют для материалов, которые в процессе эксплуатации под­вергаются истирающему воздействию. Это важное свойство для полов, лестничных ступеней, дорожных покрытий.

Истираемость И вычисляют по формуле

где т, т1 масса образца соответственно до и после испытания, г;

А — площадь истираемой поверхности, см2.

Упругостью называют способность материала восстанавливать первоначальную форму и размеры после снятия нагрузки, которая вызвала эти изменения. Наибольшее напряжение, до которого в ма­териале возникают только упругие деформации, называют пределом упругости. У каждого материала есть постоянная характеристика — модуль упругости Е, Па или МПа. Модуль упругости характеризует жесткость материала, т.е. его способность сопротивляться упругим деформациям.

Упругими являются резина, герметизирующие прокладки, ла­кокрасочные пленки, сталь, древесина и другие материалы.

Пластичность свойство твердого материала изменять без раз­рушения форму и размеры под действием нагрузки и сохранять их по­сле ее снятия. Пластичными являются глиняное тесто, бетонные и рас­творные смеси, битум при положительных температурах, свинец и др.

Хрупкость свойство твердого материала внезапно разру­шаться под действием внешних сил без предварительной остаточной деформации.

кристаллическим, стеклообраз­ным, но и полимерным материалам. Большинство материалов при понижении температуры становятся хрупкими (битумы, некоторые пластмассы, металлы).

Малоуглеродистая сталь, пластичная при комнатной темпера­туре, при сильном охлаждении становится хрупкой. К хрупким мате­риалам относятся стекло, керамические изделия, чугун.

Ударная вязкость или сопротивление удару свойство, харак­теризующее сопротивление материала разрушению или деформиро­ванию при ударе. Хрупкие материалы плохо сопротивляются удару.

Сопротивление удару важно для материалов дорожных покры­тий, а также конструкций, подвергаемых при эксплуатации динами­ческим (ударным) нагрузкам.

Для рулонных материалов (отделочных, обоев и др.) важными свойствами являются разрывная прочность (при надрезе), прочность при проколе, продавливании и т.п.

Износ разрушение материала при совместном действии ис­тирания и удара. Износ материала зависит от его структуры, состава, твердости, прочности, истираемости. Прочность при износе оценива­ется потерей в массе, выраженной в процентах. Износ важен для ма­териалов полов, ступеней лестниц, дорожных покрытий, лакокрасоч­ных пленок.

Специальные свойства строительных материалов

К специальным свойствам относятся: реологические и химические и технологические свойства.

Реологические свойства называют структурно-механическими.

Реология — наука о деформациях и текучести веществ. Объект реологии — жидкие и пластичные вещества. В реологии жидкостями считаются вещества, которые, под действием приложенной силы, не­ограниченно деформируются, т.е. текут. Идеально твердые тела под действием силы деформируются упруго (обратимо) и восстанавливают свою форму после окончания действия силы. Реальные материалы, в том числе бетонные и растворные смеси, краски, мастики сочетают в себе свойства жидких и твердых тел. В зависимости от преобладания того или иного свойства говорят о вязкотекущих или пластично-вязких смесях.

К основным реологическим характеристикам относятся: вяз­кость, предельное напряжение сдвига, тиксотропия.

Вязкость внутреннее трение жидкости, препятствующее пе­ремещению одного ее слоя относительно другого. Вязкость характери­зуется коэффициентом динамической вязкости г) и измеряется в Па·с.

В строительстве применяют большей частью пластично-вязкие смеси (строительные растворы, краски, гипсовое, цементное тесто и т.д.). По своим свойствам пластично-вязкие тела занимают промежуточное положение между жидкими и твердыми телами. Так, тесто можно разрезать ножом (что нельзя сделать с жидкостью), но вместе с тем тесто принимает форму сосуда, в который оно помещено, т.е. ведет се­бя как жидкость.

Наблюдая за растворной смесью или краской под нагрузкой, можно заметить, что при малых нагрузках они ведут себя как твер­дые тела, проявляя упругие свойства. При увеличении нагрузки у них появляются необратимые пластические деформации. При даль­нейшем увеличении нагрузки эти смеси начинают течь, как вязкие жидкости.

Предельное напряжение сдвига величина внутренних на­пряжений, при которой материал начинает необратимо деформиро­ваться (течь), т.е. превращается в вязкую жидкость. Этот показатель у строительных смесей также называют структурной прочностью.

В структурированных системах процесс разрушения структуры протекает постепенно: сначала более медленно, затем ускоряется, а при дальнейшем увеличении напряжения или скорости деформации (течения) структура полностью разрушается. Причиной разрушения структуры материала является нарушение внутренней связи между его частицами при указанных напряжениях.

Многие пластично-вязкие смеси при повторяющихся (динами­ческих) воздействиях могут обратимо терять структурную вязкость, временно превращаясь в вязкую жидкость. Это свойство, называемое тиксотропией, характерно для смесей на основе минеральных вя­жущих (бетонных и растворных смесей), красок и мастик. Физическая основа тиксотропии — разрушение структурных связей внутри пла­стично-вязкого материала. После прекращения механического воз­действия материал вновь обретает структурную прочность.

Явление тиксотропии используется при виброуплотнении бе­тонных смесей и нанесении мастичных и окрасочных составов шпате­лем или кистью. В строительных лабораториях реологические свойст­ва смесей оцениваются применительно к условиям их использования в строительстве. В этом случае определяют не конкретные реологиче­ские характеристики (вязкость, предельное напряжение сдвига и т.п.), а обобщенные показатели: консистенцию вяжущего теста, удобоукладываемость растворной или бетонной смеси и т.д., используя для этого специальные приборы и методы определения.

Химические свойства характеризуют способность материалов противостоять разрушающему действию солей, кислот, щелочей, ма­сел, нефтепродуктов, с которыми в процессе эксплуатации они могут находиться в соприкосновении. Основными химическими свойствами являются химическая, коррозионная и биологическая стойкость, адгезионная способность, экологическая чистота.

Химическая стойкость способность материалов сопротив­ляться разрушительному влиянию щелочей, кислот, растворенных в воде солей и газов.

Стойкими к воздействию кислот и растворов солей являются пласт­массы на основе полиэтилена, полистирола, поливинилхлорида. Вы­сокой кислотостойкостью отличаются углеродистые стали, чугуны, гранит, каменное литье из базальта, шлакоситаллы. К шелочестойким материалам относятся хромоникелевые стали, латуни (нике­левые), бетоны на глиноземистом цементе.

Коррозионная стойкость свойство материала сопротивлять­ся коррозии, т.е. разрушению, вызванному действием внешней агрес­сивной среды.

Коррозия (от лат. corrodo разъедаю) бывает химической и электрохимической. Благоприятной средой для развития химической коррозии является вода как пресная, так и морская. Электрохимиче­ская коррозия образуется в результате воздействия растворителей, кислот, щелочей. Коррозии подвергаются металлы, бетон, горные по­роды. Коррозия горных пород и каменных материалов — это их рас­творение под влиянием химического воздействия воды. Коррозия бе­тона — это разрушение цементного камня от действия пресных, минерализованных вод.

коррозионно-стойкими. -керамические материалы с плотным черепком, стекло, асбесты, легированные стали, сплавы титана и алюминия, многие пластмассы и др.

Биологическая стойкость способность материалов сопротив­ляться влиянию процессов жизнедеятельности бактерий и других живых организмов (биологической коррозии).

К химическим свойствам материалов относят адгезионную спо­собность. Адгезия (от лат. adhaesio прилипание) — сцепление и связь между находящимися в контакте поверхностями разнообразных по составу твердых или жидких материалов.

Адгезионная способность проявляется в сопротивлении отрыву или разделению контактирующих материалов. Количественной оцен­кой адгезии является усилие отрыва, отнесенное к единице площади контакта.

Высокой адгезионной способностью обладают битумные и дегте­вые, магнезиальные и другие вяжущие. Это свойство используется при изготовлении кровельных, гидроизоляционных материалов, фиб­ролита, ксилолита (материала для полов); оно имеет большое значе­ние при склеивании, сварке, нанесении защитно-декоративных по­крытий (лакокрасочных, эмалевых и др.).

В связи с широким внедрением в строительную практику синте­тических полимерных материалов важной характеристикой качества строительных материалов является их экологическая чистота (экологичность).