Смекни!
smekni.com

Отчет по практике в АО НГСК КазСтройСервис (стр. 3 из 3)

Z = F/v,

где F и v — комплексные амплитуды возмущающей силы и колебательной скорости соответственно. В импедансных методах используют изгибные и продольные волны.

При использовании изгибных волн преобразователь стержневого типа содержит соединенный с генератором излучающий и приемный пьезоэлементы. Через сухой точечный контакт преобразователь возбуждает в изделии гармонические изгибные колебания. В зоне дефекта соединения модуль |Z| механического импеданса Z = |Z|e jφ уменьшается и меняется его аргумент φ. Эти изменения регистрируются электронной аппаратурой. В импульсном варианте этого метода в системе преобразователь — изделие возбуждают импульсы свободно затухающих колебаний. Признаком дефекта служит уменьшение амплитуды и несущей частоты этих колебаний.

Кроме совмещенного преобразователя применяют раздельно-совмещенные преобразователи, имеющие в общем корпусе раздельные излучающий и приемный вибраторы. Эти преобразователи работают в импульсном режиме.При работе совмещенными преобразователями используют частоты до 8 кГц, раздельно-совмещенными — импульсы с несущими частотами 15—35 кГц. В другом варианте в контролируемой многослойной конструкции с помощью плоского пьезопреобразователя возбуждают продольные упругие волны фиксированной частоты. Дефекты регистрируют по изменению входного электрического импеданса Zэ, пьезопреобразователя. Импеданс Zэ, определяется входным акустическим импедансом контролируемой конструкции, зависящим от наличия и глубины залегания дефектов соединения между ее элементами. Изменения Zэ представляют в виде точки на комплексной плоскости, положение которой зависит от характера дефекта. В отличие от методов, использующих изгибные волны, преобразователь контактирует с изделием через слой контактной смазки.

Метод контактного импеданса, применяемый для контроля твердости, основан на оценке механического импеданса зоны контакта алмазного индентора стержневого преобразователя, прижимаемого к контролируемому объекту с постоянной силой. Уменьшение твердости увеличивает площадь контактной зоны, вызывая рост ее упругого механического импеданса, что отмечается по увеличению собственной частоты продольного колеблющегося преобразователя, однозначно связанной с измеряемой твердостью.

Рабочие частоты твердомеров 25—80 кГц, диапазон измерений 20—68 HRC (50—990 HV). Ультразвуковые твердомеры портативны (1,5—3 кг) и позволяют измерять твердость в труднодоступных местах (зубья шестерен и т.п.).

Пассивные акустические методы основаны на анализе упругих колебаний волн, возникающих в самом контролируемом объекте.

Наиболее характерным пассивным методом является акустико-эмиссионный метод. Явление акустической эмиссии состоит в том, что упругие волны излучаются самим материалом в результате внутренней динамической локальной перестройки его структуры. Такие явления, как возникновение и развитие трещин под влиянием внешней нагрузки, аллотропические превращения при нагреве или охлаждении, движение скоплений дислокаций, — наиболее характерные источники акустической эмиссии. Контактирующие с изделием пьезопреобразователи принимают упругие волны и позволяют установить место их источника (дефекта).

Пассивными акустическими методами являются вибрационно-диагностический и шумодиагностический. При первом анализируют параметры вибраций какой-либо отдельной детали или узла (ротора, подшипников, лопатки турбины) с помощью приемников контактного типа, при втором — изучают спектр шумов работающего механизма, обычно с помощью микрофонных приемников.

По частотному признаку акустические методы делят на низкочастотные и высокочастотные. К первым относят колебания в звуковом и низкочастотном (до нескольких десятков кГц) ультразвуковом диапазонах частот. Ко вторым — колебания в высокочастотном ультразвуковом диапазоне частот: обычно от нескольких сот кГц до 20 МГц. Высокочастотные методы обычно называют ультразвуковыми.

Области применения методов. Из рассмотренных акустических методов контроля наибольшее практическое применение находит эхо-метод. Около 90 % объектов, контролируемых акустическими методами, проверяют эхо-методом. Применяя различные типы волн, с его помощью решают задачи дефектоскопии поковок, отливок, сварных соединений, многих неметаллических материалов. Эхо-метод используют также для измерения размеров изделий. Измеряют время прихода донного сигнала и, зная скорость ультразвука в материале, определяют толщину изделия при одностороннем доступе. Если толщина изделия неизвестна, то по данному сигналу измеряют скорость, оценивают затухание ультразвука, а по ним определяют физико-механические свойства материалов.

Зеркально-теневой метод используют вместо или в дополнение к эхо-методу для выявления дефектов, дающих слабое отражение ультразвуковых волн в направлении раздельно-совмещенного преобразователя.

Эхо-зеркальный метод также применяют для выявления дефектов, ориентированных перпендикулярно поверхности ввода.

Эхо-зеркальный метод в варианте "тандем" используют для выявления вертикальных трещин и непроваров при контроле сварных соединений. Дефекты некоторых видов сварки, например непровар при электронно-лучевой сварке, имеют гладкую отражающую поверхность, очень слабо рассеивающую ультразвуковые волны, но такие дефекты хорошо выявляются эхо-зеркальным методом. Дефекты округлой формы (шлаковые включения, поры) дают большой рассеянный сигнал и хорошо регистрируются совмещенным преобразователем.

Дельта и дифракционно-временной методы также используют для получения дополнительной информации о дефектах при контроле сварных соединений.

Для создания хорошего контакта приемного прямого преобразователя с поверхностью сварного соединения валик усиления зачищают. С помощью этого метода довольно точно определяют положение дефекта вдоль сварного шва, что важно для его автоматической регистрации.

Эхо-теневой метод применяют также при контроле сварных соединений. Например, при автоматическом контроле сварных соединений искатели располагают по обе стороны от шва и принимают как отраженные, так и прошедшие сигналы. Последние используют для контроля качества акустического контакта и обнаружения дефектов, ориентированных таким образом, что эхо-сигналы от них очень слабы.

Теневой и эхо-сквозной методы используют только при двустороннем доступе к изделию, для автоматического контроля изделий простой формы, например листов в иммерсионной ванне. Чувствительность теневого метода к дефектам в 10—100 раз меньше, чем эхо-метода в связи с большим влиянием помех. Применение эхо-сквозного метода в значительной мере устраняет этот недостаток.

Теневой метод применяют также для контроля изделий с большим уровнем структурной реверберации, т.е. шумов, связанных с отражением ультразвука от неоднородностей, крупных зерен, дефектоскопии многослойных конструкций и изделий из слоистых пластиков. При контроле тонких изделий с очень высоким уровнем структурных шумов более высокую чувствительность обеспечивает временной теневой метод. Теневой и временной методы позволяют обнаруживать крупные дефекты в материалах, где контроль другими акустическими методами затруднен или невозможен: крупнозернистой аустенитной стали, сером чугуне, бетоне, огнеупорном кирпиче.

Теневой метод применяют вместо эхо-метода при исследовании физико-механических свойств материалов с большим затуханием и рассеянием акустических волн, например при контроле прочности бетона по скорости ультразвука. Для этой цели применяют не только теневой метод, но (в более общем виде) метод прохождения. Например, излучатель и приемник располагают с одной стороны изделия, на одной поверхности и измеряют время и амплитуду сквозного сигнала головной волны.

Локальный метод вынужденных колебаний применяют для измерения малых толщин при одностороннем доступе. В настоящее, время для ручного контроля применяют импульсные толщиномеры. Для автоматического измерения толщины стенок тонких труб лучший результат дает иммерсионный резонансный толщиномер.

Интегральный метод вынужденных колебаний применяют для определения модулей упругости материала по резонансным частотам продольных, изгибных или крутильных колебаний образцов простой формы, вырезанных из материала изделия, т.е. при разрушающих испытаниях.

Интегральный метод свободных колебаний используют для проверки бандажей вагонных колес или стеклянной посуды "по чистоте звона" с субъективной оценкой результатов на слух.

Реверберационный, импедансный, вело-симетрический, акустико-топографический методы и локальный метод свободных колебаний используют в основном для контроля многослойных конструкций. Акустико-топографический метод применяют для обнаружения дефектов преимущественно в металлических многослойных конструкциях (сотовые панели, биметаллы и т.п.).

Вибрационно-диагностический и шумо-диагностический методы служат для диагностики работающих механизмов. Метод акустической эмиссии применяют в качестве средства исследования материалов, конструкций, контроля изделий (например, при гидроиспытаниях) и диагностики во время эксплуатации. Его важными преимуществами перед другими методами контроля является то, что он реагирует только на развивающиеся, действительно опасные дефекты, а также возможность проверки больших участков или даже всего изделия без сканирования его преобразователем.

ЗАКЛЮЧЕНИЕ

В данной работе я проанализировал результаты моей производственной практики, в ходе которой познакомился с основными видами деятельностиАО «НГСК КазСтройСервис». Практика позволила вплотную познакомиться с технико-экономическим оснащение производства, особенно, с оборудованием и приемами работы ультразвуковой дефектоскопии. Считаю, что познавательная ценность практики для меня сказалась в том, что мне удалось поработать с новейшим оборудованием, которое используется в области неразрушающего контроля, а именно с ультразвуковым дефектоскопом Holiday 160X(Германия). Полученные мной в университете теоретические знания, подкрепились практическими навыками и умениями и поэтому данную производственную практику я считаю для себя успешной.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1.Алешин Н.П., Щербинский В.Г. Контроль качества сварочных работ. М.: Высшая школа, 1986. –207 с.

2.Акулов А.И., Бельчук Г.А., Демьянцевич В.П. Технология и оборудование сварки плавлением. М. 1977

3.Николаев Г.А., Куркин С.А., Винокуров В.А. Сварные конструкции. Прочность сварных соединений и деформации конструкций. М, 1982.

4.Назаров С.Т. Методы контроля качества сварных соединений. М.: Машиностроение, 1964г.

5.Официальный сайт АО «НГСК КазСтройСервис» http:www.kazstroyservis.kz

6.Химченко Н.В., Бобров В.А. Неразрушающий контроль в химическом и нефтяном машиностроении. М.,1978.

7.Шебеко Л.П. Оборудование и технология автоматической и полуавтоматической сварки. М.,1981.

8.Бондин И.Н. Контроль качества сварных соединений и конструкций. М., Машгиз, 1962, -160 с.

9.Под ред. Волченко В.Н. Контроль качества сварки. М.: Машгиз, 1975.