Смекни!
smekni.com

Проектирование жилого дома со встроенным магазином (стр. 15 из 16)

fi – расчетное сопротивление i-го слоя грунта основания на боковой поверхности сваи, кПа, принимаемое по табл. 2 СНИП 2.02.03-85;

fi1= 4.65 тс/м2 , l1=5.5м по скважине 1,

fi1= 3.3 тс/м2, l2=1.5м по скважине 1

hi – толщина i-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м;

gсR,gсf – коэффициенты условий работы грунта соответственно под нижним концом и на боковой поверхности сваи, учитывающие влияние способа погружения сваи на расчетные сопротивления грунта и принимаемые по табл. 3 СНИПа gсR =1, gсf=1.

1.НЕСУЩАЯ СПОСОБНОСТЬ СВАИ:

Fd =1[1х 910х 0.09 + 1.2х 1х 4.65х 5.5 + 1.2х 1х 3.3х 1.5]= 81.9+30.69+5.94=118.5т

РАСЧЕТНАЯ НАГРУЗКА НА СВАЮ РАВНА:

;

Определяем шаг свай по формуле:

;

где

Nр - расчетные нагрузки на фундамент см. Приложение 1

N- расчетная нагрузка на сваю.

В соответствии с конструктивными требованиями

.

Принимаем шаг свай- а не менее 0.9м.

В свайных фундаментах с несущими стенами наличие свай обязательно в углах зданий, в местах пересечения продольных и поперечных стен. На чертеже сваи расположены в прямом и шахматном порядке.

7.4 Расчет свайного фундамента по деформациям

Согласно п.6.1. СНиП расчет фундамента из висячих свай и его основания по деформациям следует, как правило, производить как для условного фундамента на естественном основании в состав которого входят сваи, ростверк и грунт в соответствии с требованиями СНиП. Границы условного фундамента определяются следующим образом: снизу - плоскостью АБ, проходящей через нижние концы свай; с боков - вертикальными плоскостями АВ и БГ, отстоящими от наружных граней крайних рядов вертикальных свай на расстояние

; сверху - поверхностью планировки грунта ВГ, здесь φII,mt- осредненное расчетное значение угла внутреннего трения грунта, определяемое по формуле:

,

где φII.i- расчетные значения углов внутреннего трения для отдельных пройденных сваями слоев грунта толщиной hi;

h - глубина погружения свай в грунт.


Схема распределения границ

Давление Р в кПа по подошве условного фундамента, определяется с учетом веса условного массива

Размеры подошвы условного фундамента:

м.

Nd1 – суммарный вес условного массива и нагрузок, приложенных на уровне обреза ростверка, кН

Nd1= N0+G1+ G2+ G3, где

N0- нагрузка приложенная на уровне обреза ростверка,

G1 - вес ростверка,

G2 - вес свай,

G3 - вес грунта в объеме выделенного условного массива.

N0- берем наибольшее - 94.4тс/м=944кН


G1=0.5х 0.6х 1х 25 = 7.5кН

G2=2х 5х 0.09х 25 = 22.5кН

G3= 1х 19 +5х 1.62+ 0.95х20 = 119кН

Nd1 = 944+7.5+22.5+119 = 1093кН

Согласно п.2.41 СНиП 2.02.01-83* при расчете деформаций основания, среднее давление под подошвой фундамента

Р не должно превышать расчетного сопротивления грунта основания R кПа, определяемого по формуле:

;

где

и
- коэффициенты, условия работы, принимаемые по табл.3 СНиП 2.02.01-83*, соответственно для гравелистых песков принимаем коэффициенты
;

k = 1, т.к. прочностные характеристики грунта ( φ и с ) определены непосредственными испытаниями;

,
,
– коэффициенты принимаемые по таблице 4 СНиП 2.02.01-83*, для
=2.11;
=9.44;
=10.8;

kz - коэффициент, принимаемый равным 1 т.к. при b<10м;

b – ширина подошвы фундамента,

γIII – осредненное расчетное значение удельного веса грунтов, залегающих ниже подошвы фундамента (при наличии подземных вод определяется с учетом взвешивающего действия воды):

γIII = 16.2 кН/м3;

γII – то же, залегающих выше подошвы:

γII = 10х(1.62х 4 + 2х 0.95)/ 4.95 =16.93 кН/м3;

сII – расчетное значение удельного сцепления грунта, залегающего непосредственно под подошвой фундамента, сII =56.7 кПа для мелкого песка;

d1 – глубина заложения фундаментов бесподвальных сооружений от уровня планировки или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала, определяемая по формуле:

где hs – толщина слоя грунта выше подошвы со стороны подвала, hs = 5.25м;

hcf - толщина конструкции пола подвала, hcf = 0,2 м;

γсf – расчетное значение удельного веса конструкций подвала, кН/м3, γcf=24 кН/м3;

db =0, т.к. глубина техподполья меньше 2м от уровня планировки;

Среднее давление по подошве условного фундамента:

Требование п.2.41 СНиП 2.02.01-83* выполняется.

ОПРЕДЕЛЕНИЕ ОСАДКИ СВАЙНОГО ФУНДАМЕНТА

Расчет осадки основания можно выполнить, используя решение теории упругости. Т.к. ширина подошвы фундамента меньше 10м, для расчета осадки фундамента используем метод послойного суммирования, согласно прил. 2 СНиП2.02.01-83*.

Давление от действующих нагрузок и собственного веса фундамента, действующее по подошве фундамента:

;

- вертикальное напряжение от собственного веса грунта на уровне подошвы фундамента:

;

.

Вертикальные напряжения от действующих нагрузок и собственного веса фундамента на глубине z от подошвы фундамента:

,

где α – коэффициент принимаемый по табл.1 прил.2 СНиП2.02.01-83* в зависимости от формы подошвы фундамента, соотношения сторон прямоугольного фундамента и относительной глубины, равной:

.

Напряжение от собственного веса грунта по подошве фундамента:

,

где dn – глубина заложения фундамента, dn=4,95 м;


.

Напряжение от собственного веса грунта на глубине z от подошвы фундамента:

.

Осадка основания s с использованием расчетной схемы в виде линейно-деформируемого полупространства( п.2.40 СНиП2.02.01-83*) определяется методом послойного суммирования по формуле:

где β - безразмерный коэффициент, равный 0,8;

– среднее значение дополнительного вертикального нормального напряжения в i-м слое грунта, равное полу сумме указанных напряжений на верхней zi-1 и нижней zi границах слоя по вертикали, проходящей через центр подошвы фундамента;

hi и Ei – соответственно толщина и модуль деформации i-го слоя грунта.

Расчет выполняется в табличной форме:

мм

< sдоп = 100 мм.
№ п/п hi , м zi 2z/b
, кН/м2
0,2
, кН/м2
, кН/м2
, кН/м2
Е, МПа si , мм
1 0,36 0 0,00 1 89.63 17,93 526.82 520,63 25 6,0
0,36 0,4 0,9765 514,44
2 0,36 0,36 0,4 0,9765 95,46 19,09 514,44 488,36 25 5,6
0,72 0,8 0,8775 462,28
3 0,36 0,72 0,8 0,8775 101,3 20,26 462,28 427,12 25 4,9
1,08 1,2 0,744 391,95
4 0,36 1,08 1,2 0,744 107,13 21,43 391,95 359,29 25 4,1
1,44 1,6 0,620 326,63
5 0,36 1,44 1,6 0,620 112,96 22,59 326,63 299,50 25 3,4
1,8 1,8 0,517 272,37
6 0,36 1,8 1,8 0,517 118,79 23,76 272,37 250,51 25 2,9
2,16 2,4 0,434 228,64
7 0,36 2,16 2,4 0,434 124,63 24,92 228,64 210,73 25 2,4
2,52 2,8 0,366 192,82
8 0,36 2,52 2,8 0,366 130,46 26,09 192,82 178,59 25 2,05
2,88 3,2 0,312 164,37
9 0,36 2,88 3,2 0,312 136,29 27,26 164,37 152,78 25 1,8
3,24 3,6 0,268 141,19
10 0,36 3,24 3,6 0,268 142,12 28,42 141,19 131,44 25 1,5
3,6 4,0 0,231 121,70
11 0,36 3,6 4,0 0,231 147,95 29,59 121,70 114,06 25 1,3
3,96 4,4 0,202 106,42
12 0,36 3,96 4,4 0,202 155,15 31,03 106,42 99,83 27,5 1,05
4,32 4,8 0,177 93,25
13 0,36 4,32 4,8 0,177 162,35 32,47 93,25 87,71 27,5 0,9
4,68 5,2 0,156 82,18
14 0,36 4,68 5,2 0,156 169,55 33,91 82,18 77,44 27,5 0,8
5,04 5,6 0,138 72,70

Заключение

Квартира – это главный элемент жилища, это та микросреда в которой человек проводит от 40-100% своего времени, в зависимости от периода жизни. Это важный элемент в жизни благоприятствующий развитию и укреплению личности(свобода личности, семейный контакт). При проектировании жилого дома с встроенно-пристроенным магазином, мной была изучена специальная и техническая литература, строительные нормы и прайс- листы на современные материалы. Спроектированное жилье отвечает санитарно-гигиеническим качествам по теплозащите, естественному освещению и звукоизоляции от шума. Магазин имеет удобную функциональную схему. Применение облегченной кладки позволяет сократить расход на материалы и время для производства каменной кладки. Применение эффективных материалов для кровли и гидроизоляции. Позволяет увеличить сроки эксплуатации. Что немаловажно в наше время и позволяет снизить расходы на эксплуатацию зданий.