Воздушная среда и ее состояние не оказывают решающего влияния на выбор размеров помещения и конструкций, а оптимальные параметры воздушной среды обеспечиваются техническими средствами (системами отопления, вентиляции и кондиционирования воздуха).
Соответственно главному функциональному назначению основной массы помещений формируются здания данного назначения. Например, учебные здания состоят главным образом из учебных помещений (аудиторий, лабораторий и т.д.), в которых осуществляется основная функция, присущая этому зданию.
Как в помещениях, так и в здании кроме главной функции обычно осуществляются подсобные функции. Например, в учебном здании подсобными функциями являются питание, общественные собрания, руководство и управление и т.п. Для них предусматриваются специальные помещения: столовые и буфеты, залы собраний (актовые залы), административные помещения и пр. При этом перечисленные подсобные функции будут для этих помещений главными. Им же сопутствуют свои подсобные функции.
Все помещения в здании, отвечающие как главному, так и подсобному функциональному назначению (так называемый состав помещений здания), связываются между собой большой группой помещений, основным функциональным назначением которых является движение людей (коридоры, лестницы, кулуары, фойе, вестибюли и т.п.). эти помещения могут быть названы «коммуникационными» или помещениями «связи».
Техническая целесообразность. Всякое здание должно быть спроектировано технически грамотно, т.е. в полном соответствии с законами механики, физики и химии. Для этого необходимо знать внешние воздействия, воспринимаемые зданием в целом и его отдельными элементами.
Эти воздействия можно разделить на два вида: силовые и несиловые.
К силовым воздействиям относятся различные виды нагрузок:
1. постоянные - от собственного веса элементов здания, от давления грунта и его подземные элементы;
2. временные длительные – от веса стационарного оборудования, от собственного веса постоянных элементов здания (например, перегородок);
3. кратковременные – от веса подвижного оборудования (например, кранов в промышленных зданиях), от веса людей, снега, мебели, от действия ветра;
4. особые – от сейсмических воздействий (в районах, подверженных землетрясениям), от воздействий в результате аварии оборудования и т.п.
К несиловым воздействиям относятся:
1. температурные воздействия, вызывающие изменение линейных размеров материалов и конструкций, которое приводит, в свою очередь, к возникновению силовых воздействий (временных длительных температурных воздействий от теплоизлучения стационарного оборудования или кратковременных температурных климатических воздействий), а также влияющие на тепловой режим помещений;
2. воздействия атмосферной и грунтовой влаги, а также парообразной влаги, содержащейся в атмосфере и воздухе помещения, вызывающие изменения физико – технических свойств материалов, из которых выполнены конструкции здания;
3. воздействие движения воздуха, вызывающее не только нагрузки (при ветре), но и его проникновение внутрь конструкции и помещения, изменение их влажного и теплового режима;
4. воздействие лучистой энергии солнца (солнечной радиации), вызывающее в результате местного нагрева температурные воздействия, изменение физико – технических свойств поверхностных слоев материала конструкций, изменение теплового и светового режима помещений;
5. воздействие агрессивных химических примесей, содержащихся в воздухе, которые в присутствии влаги могут привести к разрушению материала конструкций здания (явления коррозии);
6. биологические воздействия, вызываемые микроорганизмами или насекомыми, приводящие к разрушению конструкций из органических строительных материалов;
7. воздействие звуковой энергии (шума) от источников, находящихся вне или внутри здания, нарушающие нормальный акустический режим помещения.
В соответствии с перечисленными воздействиями к зданию и его конструкциям предъявляется комплекс серьезных технических требований.
1. Прочность, зависящая от применяемых материалов и их способности воспринимать передаваемые на них воздействия (нагрузки).
2. Устойчивость (жесткость), характеризуемая целесообразным взаимным сочетанием и расположением составных элементов конструкции в соответствии с величиной и направлением внешних воздействий и величиной внутренних напряжений, а также зависимая от прочности сопряжения элементов здания (узловых сопряжений).
3. Долговечность, означающая прочность, устойчивость и сохранность здания и его элементов во времени, зависимая от:
• ползучести материалов, т.е. от процесса малых непрерывных деформаций, протекающих в материалах в условиях длительного воздействия нагрузок;
• морозостойкости материалов, т.е. от способности влажного материала противостоять многократному попеременному замораживанию и оттаиванию; морозостойкость определяется количеством циклов замораживания;
• влагостойкости материалов, т.е. их способности противостоять разрушающему действию влаги (размягчению, набуханию, короблению и т.д.);
• коррозиестойкости, т.е. от способности материала сопротивляться разрушению, вызываемому химическими и электрохимическими процессами;
• биостойкости, т.е. от способности органических строительных материалов противостоять действию насекомых и микроорганизмов.
По степени долговечности здания разделяются на три группы: I со сроком эксплуатации более 100 лет; II – от 50 до 100 лет; III – от 20 до 50 лет.
Такое разделение является условным, поскольку срок службы здания в значительной степени зависит от качества его эксплуатационного содержания.
Вопросы прочности и устойчивости здания в целом и его отдельные конструкции рассматриваются в специальных учебных курсах металлических, железобетонных и деревянных конструкций, оснований и фундаментов.
Особым и крайне важным техническим и отчасти функциональным требованиям, оказывающим большое влияние на решение здания, является пожарная безопасность, означающая сумму мероприятий, которые уменьшают возможность возникновения пожара и , следовательно, возгорания конструктивных элементов здания и обеспечивают безопасность людей.
Строительные материалы и конструкции по степени возгораемости делятся на три группы:
а) несгораемые материалы – под воздействием огня или высокой температуры с трудом воспламеняются, тлеют или обугливаются; несгораемые конструкции должны выполняться из несгораемых материалов;
б) трудносгораемые материалы – под воздействием огня или высокой температуры с трудом воспламеняются, тлеют или обугливаются, но после удаления источника огня или высоко температуры горение и тление прекращаются; трудносгораемые конструкции выполняются из труносгораемых или сгораемых материалов с защитой несгораемыми материалами;
в) сгораемые материалы- под воздействием огня или высокой температуры воспламеняются или тлеют и продолжают гореть или тлеть после удаления источника огня или высокой температуры; сгораемые конструкции выполняются из сгораемых материалов.
Конструкции характеризуются также пределом огнестойкости, т.е. сопротивлением действию огня в часах до потери прочности или устойчивости или до образования сквозных трещин, а также до повышения температуры на поверхности конструкции со стороны, противоположной действию огня, до 140 градусов (в среднем).
Здания по огнестойкости разделяются на пять степеней в зависимости от степени возгораемости и предела огнестойкости конструкций. Первая степень огнестойкости характеризует наибольшую огнестойкость, пятая – наименьшую.
В целях предупреждения распространения огня по зданию, если оно имеет небольшую степень огнестойкости, устраиваются противопожарные стенки или брадмауэры из несгораемых материалов с высоким пределом огнестойкости.
При возникновении пожара в здании люди во избежание несчастных случав должны быстро его покинуть . такой процесс движения людей называется аварийной или вынужденной эвакуацией в отличие от движения людей в обычных случаях. Время, в течение которого вынужденная эвакуация должна быть завершена, называется временем эвакуации. Для общественных зданий с большим количеством находящихся в них людей максимальное время эвакуации устанавливается специальными правилами. Для того чтобы эвакуация происходила планомерно, без образования «пробок», несчастных случаев из – за давки и в заданное время, коммуникационные помещения должны быть возможно короче и иметь соответствующую ширину для беспрепятственного движения.
Такой же комплексный функционально – технический характер имеет требование благоустройства зданий, слагающееся из ряда мероприятий. Обеспечение здания отоплением, вентиляцией, канализацией, электроосвещением, лифтами, бытовым оборудованием (плитами для приготовления пищи), радиотрансляцией и пр.; обеспечение того или иного качества отделки; обеспечение установленного эксплуатационного режима здания и т.д.
Благоустройство создает наибольшие удобства для осуществления того или иного функционального процесса и достигается главным образом техническими средствами (т.е. перечисленными видами технического оборудования).
Архитектурно – художественные качества. Объемно – планировочная структура и форма здания как произведения архитектуры обуславливается, прежде всего, материальными требованиями тех социальных процессов (труда, культуры, быта и пр.), для которых данное здание предназначается, т.е. функциональными и техническими требованиями. Но каждый социальный процесс, поскольку он связан с сознательно деятельностью человека, затрагивает сферу его не только материальных, но и духовных интересов. Следовательно, в формировании материально – организованной среды, которую представляют собой здания, всегда неизбежно присутствует духовный элемент, выражающийся в эстетических или, как говорят, в архитектурно – художественных качествах отдельного здания или комплекса. Архитектурно – художественные качества определяются критериями красоты.