Смекни!
smekni.com

Эксплуатация и наладка систем теплогазоснабжения и вентиляции (стр. 29 из 33)

Для измерения скоростей от 1 до 20 м/с используют чашечные анемометры. Измерение анемометром производят в открытых концах воздуховодов, в приточных и вытяжных отверстиях, в проемах внешних ограждений. Для большей точности показаний анемометры должны

быть укреплены на рейках. Счетный механизм пускают и выключают с помощью штуцера. Ось колеса чашечного анемометра должна быть перпендикулярна оси потока, а ось колеса крыльчатого анемометра должна совпадать с направлением потока. В каждом поеме замер нужно производить два раза. Разница между результатами не должна превышать

%, в противном случае производят дополнительный замер. В открытых проемах и отверстиях площадью до 1…2 м2 скорость воздуха замеряют при медленном равновесном передвижении анемометра по всему сечению отверстия или проема.

Для замера малых скоростей движения воздуха (до 1 м/с) может быть использован кататермометр. Это термометр с цилиндрическим или шаровым резервуаром внизу, который переходит в капилляр с расширением в верхней части. Шкала кататермометра проградуирована от 35 до 40оС в цилиндрическом приборе и от 33 до 40оС – в шаровом. Принцип действия прибора основан на зависимости скорости охлаждения его резервуара от метеорологических условий, в частности от скорости движения воздуха.

На таком же принципе основано действие термоанемометров (рис. 4.5). В этих приборах приемником служит проволока, нагреваемая электрическим током до заданной температуры. Измерение температуры производят электрометром или термопарой.

Рис. 4.5. Термоанемометр: 1 – гальванометр; 2 – вилка измерительного преобразователя; 3 – зажим для включения прибора в сеть; 4 – переключатель питания; 5 – переключатель для измерения температуры или скорости движения воздуха; 6 – переключатель «Измерение - Контроль»;7 – ручка регулирования напряжения; 8 – ручка регулировании подогрева; 9 – защитный футляр измерительного преобразователя; 10 – измерительный преобразователь (микросопротивление)

Объем воздуха V, м3, проходящего в течение 1 с через проем, отверстие или сечение воздуховода, подсчитывают по формуле

, (4.5)

где

- средняя скорость воздушного потока, м/с, замеряемая анемометром; F – площадь сечения воздуховода, м2.

Для измерения относительной влажности воздуха в вентиляционных установках применяют психрометр (рис. 4.6), имеющий шкалу от -15 до+50оС с ценой деления 0,2оС или шкалу от 0 до 45оС. Он состоит из двух одинаковых ртутных термометров – сухого и влажного (смоченного).


Рис. 4.6. Психрометр: 1 – резервуар для ртути; 2влажный термометр; 3 – сухой термометр;4 – планка

Резервуар влажного ртутного термометра обернут гигроскопической тканью, конец которой опущен в стаканчик с дистиллированной водой. Вследствие испарения влаги смоченный термометр показывает более низкую температуру, чем сухой. По разности показаний этих термометров, пользуясь специальными таблицами или графиками, определяют относительную влажность воздуха.

Аспирационный психрометр (рис. 4.7) в верхней части имеет вентилятор 3, который приводят в действие заводным механизмом 2 или электромотором. Вентилятор с равномерной скоростью протягивает через прибор исследуемый воздух. Этот прибор более точен, чем стационарный, так как конструкция его исключает влияние на показания неравномерной скорости воздуха и теплового облучения.

При необходимости более точного определения относительной влажности воздуха могут быть использованы термовлагометры ТВ-2 и датчики влажности ДИВ-3 (абсолютная погрешность

% в диапазоне температур 5…35оС), а также автоматические непрерывно действующие гигрометры «Волна-1М» (абсолютная погрешность
% в диапазоне температур 0…60оС). Чувствительным элементом термовлагометра ТВ-2 является пленочный хлористолитиевый влагочувствительный элемент сорбционного типа, сопротивление которого изменяется в зависимости от относительной влажности воздуха. Для компенсации зависимости сопротивления влагочувствительного элемента от температуры последовательно с ним включены два терморегистра.

В качестве чувствительного элемента гигрометра «Волна-1М» используется пьезоэлектрический резонанс, покрытый слоем гигроскопического вещества. Принцип действия прибора основан на измерении изменения частоты колебаний резонанса в результате сорбции влаги пленкой, нанесенной на его поверхность.

Рис. 4.7. Аспирационный психрометр с вентилятором: 1 – ручка-подвеска; 2 – заводной механизм вентилятора; 3 – вентилятор; 4 – сухой термометр; 5 – влажный термометр; 6 – смоченная марля

4.3 ПРИБОРЫ И СРЕДСТВА КОНТРОЛЯ НАЛИЧИЯ ВРЕДНЫХ ВЕЩЕСТВ И ПЫЛИ В ВОЗДУХЕ

При контроле воздушной среды на содержание вредных веществ применяют различные методы: лабораторные, индикационные, экспрессные, инструментальные.

Лабораторные методы дают возможность точно определить микроколичества токсичных веществ в воздухе, но при этом требуют значительного времени и применяются, главным образом, в исследовательских работах.

Для качественного и количественного анализа органических и неорганических газообразных смесей в лабораторных условиях может быть использован, например, универсальный хроматограф «Биохром-1». В основу принципа действия прибора положен хроматографический метод, который заключается в разделении веществ в потоке газоносителя.

Индикационные методы отличаются простотой, с их помощью можно быстро производить качественные определения. Например, бумажка, пропитанная уксуснокислым свинцом, чернеет в присутствии следов сероводорода; бумажка, пропитанная парадиметиламинобензальдегидом (бумажка Прокофьева), краснеет в присутствии следов фосгена и т.д. Индикационные методы применяются, когда нежелательно присутствие токсичных веществ даже в очень малых концентрациях, а при их наличии требуются особые срочные меры (пуск аварийной вентиляции, нейтрализация загазованного участка, применение средств индивидуальной защиты и др.). Количественные определения токсичных веществ в воздухе при помощи индикационных методов можно произвести только ориентировочно.

В практической деятельности для проведения экспрессных методов химического анализа используют переносные универсальные газоанализаторы УГ-1 УГ-2 УГ-3, ГХ-4, ГХ-5, ГХ-6, ГХ-СО-5, рудничный индикатор и другие приборы. К ним прилагают наборы индикаторных трубок, реактивной бумаги, специальные растворы со стандартными шкалами.

Принцип действия широко применяемого газоанализатора УГ-3 основан на протягивании через индикаторную трубку строго определенного объема исследуемого воздуха. Побудителем расхода воздуха является резиновый сильфон, растягиваемый пружиной. Объем воздуха задается по шкале прибора в диапазоне 0...400 см3 путем измерения угла поворота барабана, на который натягиваются два тросика, соединенных с подвижным концом сильфона. Цена одного деления шкалы прибора 10 см3. По длине окрашенного столбика порошка в индикаторной трубке судят о концентрации анализируемого газа (пара) в воздухе. Газоанализатор УГ-3 имеет небольшие размеры (204

104
94 мм) и массу (1,7 кг), прост и удобен в обращении.

Наиболее совершенными являются инструментальные методы контроля загазованности воздушной среды, выполняемые с помощью газоанализаторов и газосигнализаторов, принцип действия которых основан на фотоколориметрическом, термохимическом, ионизационном, эмиссионном, кулонометрическом и других способах анализа.

Различают автоматические газоанализаторы и газоанализаторы периодического действия. Автоматические газоанализаторы осуществляют обычно непрерывную регистрацию уровня загазованности, выдавая результаты на бумаге.

Газосигнализаторы настраивают на определенный уровень загазованности (ПДК, взрывоопасное содержание газа и др.), при достижении которого они дают световой или звуковой сигнал.

На практике используют достаточно много приборов, рассчитанных на определение различных химических веществ. К ним следует отнести: ФЛ-5501М (универсальный газоанализатор); ТХ-2104, ПГ-1, Г-СОМ, «Паллади-2»; ФЛ 2106 (окись углерода); ГСФ-З (фосген); ФК-560, ФЛ 6602 (сероводород); ИКРП (ртуть); ФКГ—3, ФЛ 6201 (хлор); ФГЦ-1Е, 2, 3, 4 (сероуглерод); ФК-450, ФЛ 4504 (окислы азота); ГПК-1 (сернистый газ); «Гамма-1», «Сигма- 1» (органические вещества) и др. Получили распространение газосигнализаторы взрывоопасных газов и паров: ПГФ2М 1, ИВП-1, СВК-ЗМ1, ИВК-1, ПИВ-1, ГБ-3, СТХ-5У4, СТХ-6, ТХ-2102 (2104), ГИК-1 и др.

Ленточные фотометры типа ФЛ являются стационарными автоматическими показывающими и самопишущими приборами, предназначенными для непрерывного измерения в циклическом режиме микроконцентраций окиси углерода (ФЛ 2106), двуокиси азота (ФЛ 4504), хлора (ФЛ 6201), Сероводорода (ФЛ 6602), фреона (ФЛ 6803), двуокиси азота, сернистого ангидрида, аммиака, гидразингидрата, озона и других газов (ФЛ 550 1М). Конструктивно универсальный ленточный фотометр ФЛ 5501М имеет газовую, электрическую и кинематическую схемы.